Advertisement

Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic

  • A. Flores-Vergara
  • E. E. García-Guerrero
  • E. Inzunza-González
  • O. R. López-Bonilla
  • E. Rodríguez-Orozco
  • J. R. Cárdenas-Valdez
  • E. Tlelo-CuautleEmail author
Original Paper

Abstract

This paper proposes a new chaotic cryptosystem for the encryption of very high-resolution digital images based on the design of a digital chaos generator by using arbitrary precision arithmetic. This can be taken as an alternative to reduce the dynamic degradation that chaotic models present when they are implemented in digital devices and to increase the security of the cryptosystems. The obtained results show that when using high-precision arithmetic, the generated sequences provide good randomness and security during a greater number of iterations of the implemented chaotic maps in comparison with the generated sequences by using the standard of simple precision or double precision according to the IEEE 754 standard for floating-point arithmetic. The proposed method does not require high-cost hardware for increasing the numerical accuracy and security. As an advantage versus other recent works, using high precision, in relation to the methods that use simple precision or double precision, it awards an exponential increase in the key space. In this manner, it is demonstrated that using multiple-precision arithmetic, a key space of \(2^{33,268}\) or higher can be obtained, depending on the level of high precision configured. The security analysis confirms that the proposed chaotic cryptosystem is secure and robust against several known attacks, as well as statistical tests of NIST and TestU01, proving that high-precision arithmetic helps to enhance the security of the cryptosystems.

Keywords

Chaotic cryptography Digital degradation floating-point arithmetic Arbitrary precision arithmetic Embedded system 

Notes

Acknowledgements

This paper was supported by the research project approved at the 18th Internal Call for Research Projects by UABC, with number 485. The researchers A.F.V. and E.R.O. were supported for his postgraduate studies at PhD level by CONACyT. Thanks to PRODEP (Professional Development Program for Professors) for supporting the new generations and for innovating the application of knowledge with the Number 402/377/E. The authors would like to express their gratitude to TECNM for financial support under project 6578.18-P.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Morabito, R., Petrolo, R., Loscri, V., Mitton, N.: LEGIoT: a lightweight edge gateway for the internet of things. Fut. Gen. Comput. Syst. 81, 1–15 (2018)Google Scholar
  2. 2.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)Google Scholar
  3. 3.
    Ng, I.C.L., Wakenshaw, S.Y.L.: The internet-of-things: review and research directions. Int. J. Res. Mark. 34(1), 3–21 (2017)Google Scholar
  4. 4.
    Kocamaz, U.E., Çiçek, S., Uyaroğlu, Y.: Secure communication with chaos and electronic circuit design using passivity-based synchronization. J. Circuits Syst. Comput. 27(04), 1850057 (2018)Google Scholar
  5. 5.
    Inzunza-González, E., Cruz-Hernández, C.: Double hyperchaotic encryption for security in biometric systems. Nonlinear Dyn. Syst. Theory 13(1), 55–68 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ferreira, H.G.C., de Sousa Junior, R.T.: Security analysis of a proposed internet of things middleware. Cluster Comput. 20(1), 651–660 (2017)Google Scholar
  7. 7.
    Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.M.: Implementation of an improved chaotic encryption algorithm for real-time embedded systems by using a 32-bit microcontroller. Microprocess. Microsyst. 45, 297–309 (2016)Google Scholar
  8. 8.
    Li, S., Mou, X., Cai, Y., Ji, Z., Zhang, J.: On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision. Comput. Phys. Commun. 153(1), 52–58 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Li, C., Lin, D., Lü, J., Hao, F.: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography. IEEE Multimed. 25(4), 46–56 (2018)Google Scholar
  10. 10.
    Zuras, D., Cowlishaw, M., Aiken, A., Applegate, M., Bailey, D., Bass, S., Bhandarkar, D., Bhat, M., Bindel, D., Boldo, S., et al.: IEEE standard for floating-point arithmetic. IEEE Std. 754–2008, 1–70 (2008)Google Scholar
  11. 11.
    Azzaz, M.S., Tanougast, C., Sadoudi, S., Bouridane, A.: Synchronized hybrid chaotic generators: application to real-time wireless speech encryption. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2035–2047 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 3119–3151 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Deng, Y., Hu, H., Xiong, W., Xiong, N.N., Liu, L.: Analysis and design of digital chaotic systems with desirable performance via feedback control. IEEE Trans. Syst. Man Cybern. Syst. 45(8), 1187–1200 (2015)Google Scholar
  15. 15.
    Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.M., Del Campo, OR A.: A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process. 109, 119–131 (2015)Google Scholar
  16. 16.
    Li, C., Lin, D., Feng, B., Lü, J., Hao, F.: Cryptanalysis of a chaotic image encryption algorithm based on information entropy. IEEE Access 6, 75834–75842 (2018)Google Scholar
  17. 17.
    García-Martínez, M., Campos-Cantón, E.: Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn. 82(4), 2119–2131 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, Y., Liu, Z., Ma, J., He, H.: A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83(4), 2373–2391 (2016)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dragan, L., Mladen, N.: Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn. 90(1), 223–232 (2017)MathSciNetGoogle Scholar
  20. 20.
    Murillo-Escobar, M.A., Cruz-Hernández, C., Cardoza-Avendaño, L., Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017)MathSciNetGoogle Scholar
  21. 21.
    Palacios-Luengas, L., Pichardo-Méndez, J.L., Díaz-Méndez, J.A., Rodríguez-Santos, F., Vázquez-Medina, R.: PRNG based on skew tent map. Arab. J. Sci. Eng. 1–14 (2018). https://doi.org/10.1007/s13369-018-3688-y
  22. 22.
    Sahari, M.L., Boukemara, I.: A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption. Nonlinear Dyn. 94(1), 723–744 (2018)Google Scholar
  23. 23.
    National Institute of Standards and Technology: Security requirements for cryptographic modules. US Department of Commerce, National Institute of Standards and Technology (2017)Google Scholar
  24. 24.
    Bassham III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L. et al.: SP 800-22 rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology (2010)Google Scholar
  25. 25.
    Deng, Y., Hanping, H., Xiong, N., Xiong, W., Liu, L.: A general hybrid model for chaos robust synchronization and degradation reduction. Inf. Sci. 305, 146–164 (2015)zbMATHGoogle Scholar
  26. 26.
    Liu, L., Liu, B., Hanping, H., Miao, S.: Reducing the dynamical degradation by bi-coupling digital chaotic maps. Int. J. Bifurc. Chaos 28(05), 1850059 (2018)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I: Reg. Pap. 63(3), 401–412 (2016)Google Scholar
  28. 28.
    Yu-Ming, X., Qiang, X., Bao, B.-C.: Grid-scroll hyperchaotic system based on microcontroller digital hardware implementation. Acta Physica Sinica 59(9), 5959–5965 (2010)Google Scholar
  29. 29.
    Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nuñez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 66–80 (2015)MathSciNetGoogle Scholar
  30. 30.
    François, M., Grosges, T., Barchiesi, D., Erra, R.: Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 19(4), 887–895 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    François, M., Grosges, T., Barchiesi, D., Erra, R.: A new pseudo-random number generator based on two chaotic maps. Informatica 24(2), 181–197 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Heidari-Bateni, G., McGillem, C.D.: A chaotic direct-sequence spread-spectrum communication system. IEEE Trans. Commun. 42(234), 1524–1527 (1994)Google Scholar
  33. 33.
    Rodríguez-Orozco, E., García-Guerrero, E.E., Inzunza-Gonzalez, E., López-Bonilla, O.R., Flores-Vergara, A., Cárdenas-Valdez, J.R., Tlelo-Cuautle, E.: FPGA-based chaotic cryptosystem by using voice recognition as access key. Electronics 7(12), 414 (2018)Google Scholar
  34. 34.
    Tlelo-Cuautle, E., Carbajal-Gomez, V.H., Obeso-Rodelo, P.J., Rangel-Magdaleno, J.J., Cruz Nuñez-Perez, J.: FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82(4), 1879–1892 (2015)MathSciNetGoogle Scholar
  35. 35.
    Sadoudi, S., Tanougast, C., Azzaz, M.S., Dandache, A.: Design and FPGA implementation of a wireless hyperchaotic communication system for secure real-time image transmission. EURASIP J. Image Video Process. 2013(1), 43 (2013)Google Scholar
  36. 36.
    Azzaz, M.S., Tanougast, C., Sadoudi, S., Fellah, R., Dandache, A.: A new auto-switched chaotic system and its FPGA implementation. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1792–1804 (2013)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)Google Scholar
  38. 38.
    IEEE Design Automation Standards Committee et al.: Std 1076–2008. IEEE standard VHDL language reference manual. IEEE, New York, NY, USA (2008)Google Scholar
  39. 39.
    Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G.: On the security defects of an image encryption scheme. Image Vis. Comput. 27(9), 1371–1381 (2009)Google Scholar
  40. 40.
    Ping, P., Jinjie, W., Mao, Y., Feng, X., Fan, J.: Design of image cipher using life-like cellular automata and chaotic map. Signal Process. 150, 233–247 (2018)Google Scholar
  41. 41.
    Özkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92(2), 305–313 (2018)Google Scholar
  42. 42.
    Lu, X., Li, Z., Li, J., Hua, W.: A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78, 17–25 (2016)Google Scholar
  43. 43.
    Cao, C., Sun, K., Liu, W.: A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map. Signal Process. 143, 122–133 (2018)Google Scholar
  44. 44.
    Pak, C., Huang, L.: A new color image encryption using combination of the 1D chaotic map. Signal Process. 138, 129–137 (2017)Google Scholar
  45. 45.
    Kwok, H.S., Tang, W.K.S.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32(4), 1518–1529 (2007)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Wei, H., Guo, H., Geng, H., Zhang, K., Liu, J., Liu, X.: A novel design of software system on chip for embedded system. J. Signal Process. Syst. 86(2–3), 135–147 (2017)Google Scholar
  47. 47.
    Larsen, A.H., Mortensen, J.J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Groves, M.N., Hammer, B., Hargus, C. et al.: The atomic simulation environment—a python library for working with atoms. J. Phys. Condens. Matter. 29(27), 273002 (2017)Google Scholar
  48. 48.
    Smith, D.M.: Using multiple-precision arithmetic. Comput. Sci. Eng. 5(4), 88–93 (2003)Google Scholar
  49. 49.
    Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. (JSAT) 1(2), 31–38 (2011)Google Scholar
  50. 50.
    Marinescu, D.C.: Classical and Quantum Information. Academic Press, Cambridge (2011)zbMATHGoogle Scholar
  51. 51.
    Junod, P., Canteaut, A.: Advanced Linear Cryptanalysis of Block and Stream Ciphers (Cryptology and Information Security). IOS Press, Amsterdam (2011)zbMATHGoogle Scholar
  52. 52.
    Siddavaatam, P., Sedaghat, R.: A novel architecture with scalable security having expandable computational complexity for stream ciphers. Facta Universitatis, Series: Electronics and Energetics 30(4), 459–475 (2017)Google Scholar
  53. 53.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)Google Scholar
  54. 54.
    Yuan, S., Jiang, T., Jing, Z.: Bifurcation and chaos in the tinkerbell map. Int. J. Bifurc. Chaos 21(11), 3137–3156 (2011)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Chen, L.-Q.: An open-plus-closed-loop control for discrete chaos and hyperchaos. Phys. Lett. A 281(5–6), 327–333 (2001)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Itoh, M., Yang, T., Chua, L.O.: Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int. J. Bifurc. Chaos 11(02), 551–560 (2001)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Verhulst, P.-F.: Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux mémoires de l’académie royale des sciences et belles-lettres de Bruxelles 18, 14–54 (1845)Google Scholar
  58. 58.
    Hénon, M.: A two-dimensional mapping with a strange attractor. In: The Theory of Chaotic Attractors, pp. 94–102. Springer (1976)Google Scholar
  59. 59.
    Moon, F.C., Linsay, P.S., Mallinckrodt, A.J., McKay, S.: Chaotic and fractal dynamics: an introduction for applied scientists and engineers. Comput. Phys. 8(1), 69 (1994)Google Scholar
  60. 60.
    Katz, J., Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)zbMATHGoogle Scholar
  61. 61.
    L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. (TOMS) 33(4), 22 (2007)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Li, J., Zheng, J., Whitlock, P.: Efficient deterministic and non-deterministic pseudorandom number generation. Math. Comput. Simul. 143, 114–124 (2018)MathSciNetGoogle Scholar
  63. 63.
    Yang, L., Xiao-Jun, T.: A new pseudorandom number generator based on complex number chaotic equation. Chin. Phys. B 21(9), 090506 (2012)Google Scholar
  64. 64.
    Stoyanov, B., Kordov, K.: Novel secure pseudo-random number generation scheme based on two tinkerbell maps. Adv. Stud. Theor. Phys. 9(9), 411–421 (2015)Google Scholar
  65. 65.
    Adlam, E., Kent, A.: Deterministic relativistic quantum bit commitment. Int. J. Quantum Inf. 13(05), 1550029 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Engineering, Architecture and Design FacultyUABCEnsenadaMexico
  2. 2.ITT, Department of Electrical and Electronics EngineeringTijuana Institute of TechnologyTijuanaMexico
  3. 3.Instituto Nacional de AstrofísicaÓptica y Electrónica (INAOE)PueblaMexico

Personalised recommendations