Advertisement

The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit

  • Fang YuanEmail author
  • Yue Deng
  • Yuxia Li
  • Guangyi Wang
Original Paper
  • 36 Downloads

Abstract

In this paper, a meminductor emulator and an active memristor emulator are designed to construct a new chaotic circuit. The initial-condition-triggered amplitude, frequency and parameter space boosting are investigated. The system owns homogenous, heterogeneous and extreme multistabilities at the same time. Various coexisting attractors with different offsets, amplitudes and frequencies are observed and analyzed. Furthermore, the presented circuit is implemented by analog circuit and DSP platform. The mentioned unique dynamic features are confirmed in the experiments. Experimental results indicate the presented system and its initial-condition-triggered features can be realized in DSP digital system. Since the system owns variable amplitude, frequency and parameter space, it has great potential value in encryption engineering fields.

Keywords

Chaos Boosting Memristor Meminductor 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grants 61801271 and 91848206. Taishan Scholar Project of Shandong Province of China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009)CrossRefGoogle Scholar
  4. 4.
    Zhang, Y.M., Guo, M., Dou, G., Li, Y.X., Chen, G.R.: A physical SBT-memristor-based Chua’s circuit and its complex dynamics. Chaos 28, 083121 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yuan, F., Wang, G.Y., Jin, P.P., Wang, X.Y.: Chaos in a meminductor based circuit. Int. J. Bifurc. Chaos 26, 1650130 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guo, M., Gao, Z.H., Xue, Y.B., Dou, G., Li, Y.X.: Dynamics of a physical SBT memristor-based Wien-bridge circuit. Nonlinear Dyn. 93, 1681–1693 (2018)CrossRefGoogle Scholar
  7. 7.
    Li, C.B., Thio, J.C., Iu, H.H.C., Lu, T.A.: A memristive chaotic oscillator with increasing amplitude and frequency. IEEE Access 6, 12945–12950 (2017)CrossRefGoogle Scholar
  8. 8.
    Zhang, G., Wu, F.Q., Hayat, T., Ma, J.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. Numer. Simul. 65, 79–90 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, S.X., Yu, Y.G., Zhang, S., Zhang, Y.T.: Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances. Phys. A-Stat. Mech. Appl. 509, 845–854 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Marco, M.D., Forti, M., Pancioni, L.: Stability of memristor neural networks with delays operating in the flux-charge domain. J. Frankl. Inst. 355, 5135–5162 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liu, P., Xi, R., Ren, P.B., Hou, J.L., Li, X.: Analysis and implementation of a new switching memristor scroll hyperchaotic system and application in secure communication. Complexity 3497640 (2018)Google Scholar
  12. 12.
    Liu, J., Xu, R.: Adaptive synchronisation of memristor-based neural networks with leakage delays and applications in chaotic masking secure communication. Int. J. Syst. Sci. 49, 1300–1315 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, B., Zou, F.C., Cheng, J.: A memristor-based chaotic system and its application in image encryption. Optik 154, 538–544 (2018)CrossRefGoogle Scholar
  14. 14.
    Li, C., Min, F.H., Jin, Q.S., Ma, H.Y.: Extreme multistability analysis of memristor-based chaotic system and its application in image decryption. AIP Adv. 7, 125204 (2017)CrossRefGoogle Scholar
  15. 15.
    Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 104, 435–442 (2017)CrossRefGoogle Scholar
  16. 16.
    Ren, G.D., Xu, Y., Wang, C.N.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88, 893–901 (2017)CrossRefGoogle Scholar
  17. 17.
    Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)CrossRefGoogle Scholar
  18. 18.
    Xu, B.R., Wang, G.Y., Shen, Y.R.: A simple meminductor-based chaotic system with complicated dynamics. Nonlinear Dyn. 88, 2071–2089 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rajagopal, K., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91, 1491–1512 (2018)CrossRefzbMATHGoogle Scholar
  20. 20.
    Chang, H., Wang, Z., Li, Y.X., Chen, G.R.: Dynamic analysis of a bistable Bi-local active memristor and its associated oscillator system. Int. J. Bifurc. Chaos 28, 1850105 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yuan, F., Wang, G.Y., Wang, X.W.: Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27, 033103 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, L., Zhang, S., Zeng, Y.C., Li, Z.J.: Generating hidden extreme multistability in memristive chaotic oscillator via micro-perturbation. Electron. Lett. 54, 808–810 (2018)CrossRefGoogle Scholar
  23. 23.
    Bao, B.C., Jiang, T., Wang, G.Y., Jin, P.P., Bao, H., Chen, M.: Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89, 1157–1171 (2017)CrossRefGoogle Scholar
  24. 24.
    Bao, H., Wang, N., Bao, B.C., Chen, M., Jin, P.P., Wang, G.Y.: Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun. Nonlinear Sci. Numer. Simul. 57, 264–275 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rajagopal, K., Jafari, S., Karthikeyan, A., Srinivasan, A., Ayele, B.: Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37, 3702–3724 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Int. J. Bifurc. Chaos 27, 1750100 (2017)CrossRefzbMATHGoogle Scholar
  27. 27.
    Yuan, F., Wang, G.Y., Jin, P.P., Wang, X.Y., Ma, G.J.: Chaos in a meminductor based circuit. Int. J. Bifurc. Chaos 26, 1650130 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Varshney, V., Sabarathinam, S., Prasad, A., Thamilmaran, K.: Infinite number of hidden attractors in memristor-based autonomous duffing oscillator. Int. J. Bifurc. Chaos 28, 1850013 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bao, B.C., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Bao, H., Jiang, T., Chu, K.B., Chen, M., Xu, Q., Bao B.C.: Memristor-based canonical Chua’s circuit: extreme multistability in voltage-current domain and its controllability in flux-charge domain. Complexity 5935637 (2018)Google Scholar
  32. 32.
    Chen, M., Sun, M.X., Bao, B.C., Wu, H.G., Xu, Q., Wang, J.: Controlling extreme multistability of memristor emulator-based dynamical circuit in flux-charge domain. Nonlinear Dyn. 91, 1395–1412 (2018)CrossRefGoogle Scholar
  33. 33.
    Wang, G.Y., Shi, C.B., Wang, X.W., Yuan F.: Coexisting oscillation and extreme multistability for a memcapacitor-based circuit. Mathematical Problems In Engineering. 6504969 (2017)Google Scholar
  34. 34.
    Bao, B.C., Wang, N., Chen, M., Xu, Q., Wang, J.: Inductor-free simplified Chua’s circuit only using two-op-amp-based realization. Nonlinear Dyn. 84, 511–525 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Li, C.B., Sprott, J.C.: Variable-boostable chaotic flows. Optik 127, 10389–10398 (2016)CrossRefGoogle Scholar
  36. 36.
    Munoz-Pacheco, J.M., Zambrano-Serrano, E., Volos, C., Tacha, O.I., Stouboulos, I.N., Pham, V.T.: A fractional order chaotic system with a 3D grid of variable attractors. Chaos Solitons Fract. 113, 69–78 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Li, C.B., Sprott, J.C., Yuan, Z.S., Li, H.T.: Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 25, 1530025 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Electrical Engineering and AutomationShandong University of Science and TechnologyQingdaoChina
  2. 2.Institute of Modern Circuits and Intelligent InformationHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations