Observer-based estimation of velocity and tire-road friction coefficient for vehicle control systems

  • Ying Peng
  • Jian ChenEmail author
  • Yan Ma
Original Paper


A novel nonlinear observer for the estimation of vehicle velocity together with the tire-road friction coefficient is presented in this paper. The modular observer is designed based on a longitudinal tire force estimation approach and a lateral tire friction model. Compared to the state-of-art methods, the proposed observer design provides accurate estimation of the longitudinal velocity, lateral velocity, and the tire-road friction coefficient simultaneously. Particularly, the longitudinal tire forces are first estimated based on a filter observer. Then, according to the calculation of lateral tire forces, the nonlinear observer is proposed to estimate vehicle velocity and the tire-road friction coefficient. Moreover, the stability property of the observer is analyzed using a Lyapunov-based method. Simulation results validate the effectiveness of the proposed method.


Vehicle dynamics Modular observer Longitudinal velocity Lateral velocity Tire-road friction coefficient 



  1. 1.
    Hu, H., Wu, Z.: Stability and hopf bifurcation of four-wheel-steering vehicles involving driver’s delay. Nonlinear Dyn. 22(4), 361–374 (2000)zbMATHGoogle Scholar
  2. 2.
    Zhang, X., Xu, Y., Pan, M.: A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre-road friction coefficient estimation. Veh. Syst. Dyn. 52(4), 475–503 (2014)Google Scholar
  3. 3.
    Rossa, F.D., Mastinu, G.: Analysis of the lateral dynamics of a vehicle and driver model running straight ahead. Nonlinear Dyn. 92(7–8), 1–10 (2017)Google Scholar
  4. 4.
    Chen, J., Yu, J., Zhang, K., Ma, Y.: Control of regenerative braking systems for four-wheel-independently-actuated electric vehicles. Mechatronics 50, 394–401 (2018)Google Scholar
  5. 5.
    Li, B., Du, H., Li, W.: A novel cost effective method for vehicle tire-road friction coefficient estimation. In: Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1528–1533 (2013)Google Scholar
  6. 6.
    Ahn, C., Peng, H., Tseng, H.E.: Robust estimation of road frictional coefficient. IEEE Trans. Control Syst. Technol. 21(1), 1–13 (2013)Google Scholar
  7. 7.
    Lee, C., Hedrick, K., Yi, K.: Real-time slip-based estimation of maximum tire-road friction coefficient. IEEE-ASME Trans. Mechatron. 9(2), 454–458 (2004)Google Scholar
  8. 8.
    Eichhorn, U., Roth, J.: Prediction and monitoring of tyre-road friction. In: Proceeding of Fisita, London, pp. 7–11 (1992)Google Scholar
  9. 9.
    Braghin, F., Brusarosco, M., Cheli, F.: Measurement of contact forces and patch features by means of accelerometers fixed inside the tire to improve future car active control. Veh. Syst. Dyn. 44(1), 3–13 (2006)Google Scholar
  10. 10.
    Pasterkamp, W.R., Pacejka, H.B.: The tyre as sensor to estimate friction. Veh. Syst. Dyn. 27(5), 409–422 (2007)Google Scholar
  11. 11.
    Tanelli, M., Piroddi, L., Savaresi, S.M.: Real-time identification of tire-road friction conditions. IET Control Theory A 3(7), 891–906 (2009)Google Scholar
  12. 12.
    Yu, H., Taheri, S., Duan, J.: An integrated cooperative antilock braking control of regenerative and mechanical system for a hybrid electric vehicle based on intelligent tire. Asian J. Control 18(1), 55–68 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wang, J., Alexander, L., Rajamani, R.: Friction estimation on highway vehicles using longitudinal measurements. J. Dyn. Syst. Meas. Control 126(2), 265–275 (2004)Google Scholar
  14. 14.
    Kim, T., Lee, J., Yi, K.: Enhanced maximum tire-road friction coefficient estimation based advanced emergency braking algorithm. In: Proceeding of 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, pp. 883–888 (2015)Google Scholar
  15. 15.
    Wang, R., Wang, J.: Tire-road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation. Control Eng. Pract. 21(1), 65–75 (2013)Google Scholar
  16. 16.
    Nakakuki, T., Shen, T., Tamura, K.: Adaptive control approach to uncertain longitudinal tire slip in traction control of vehicles. Asian J. Control 10(1), 67–73 (2010)MathSciNetGoogle Scholar
  17. 17.
    Rajamani, R., Piyabongkarn, D., Lew, J. Grogg, J.: Algorithms for real-time estimation of individual wheel tire-road friction coefficients. In: Proceeding of American Control Conference (ACC), Minneapolis, MN, pp. 6–11 (2006)Google Scholar
  18. 18.
    Wang, R., Yin, G., Wang, J.: Vehicle lateral velocity and tire-road friction coefficient estimation. In: Proceeding of Dynamic Systems and Control Conference Joint with the JSME, Motion and Vibration Conference, pp. 495–502 (2012)Google Scholar
  19. 19.
    Tanelli, M., Ferrara, A., Giani, P.: Combined vehicle velocity and tire-road friction estimation via sliding node observers. In: Proceeding of 2012 IEEE International Conference on Control Applications, Dubrovnik, pp. 130–135 (2012)Google Scholar
  20. 20.
    Yu, J., Chen, J., Peng, Y., Liu, H.: Nonlinear observer for longitudinal and lateral velocities of vehicles based on the estimation of longitudinal tire forces. In: Proceeding of American Control Conference (ACC), Boston, MA, pp. 6887–6892 (2016)Google Scholar
  21. 21.
    Kim, S., Kim, H.: Systematic robustness analysis of least squares mobile robot velocity estimation using a regular polygonal optical mouse array. Asian J. Control 14(2), 348–358 (2012)zbMATHGoogle Scholar
  22. 22.
    Zhao, L.H., Liu, Z.Y., Chen, H.: Design of a nonlinear observer for vehicle velocity estimation and experiments. IEEE Trans. Control Syst. Technol. 19(3), 664–672 (2011)Google Scholar
  23. 23.
    Li, L., Song, J., Kong, L.: Vehicle velocity estimation for real-time dynamic stability control. Int. J. Automot. Technol. 10(6), 675–685 (2009)Google Scholar
  24. 24.
    Guo, H., Chen, H., Xu, F., Wang, F., Lu, G.: Implementation of EKF for vehicle velocities estimation on FPGA. IEEE Trans. Ind. Electron. 60(9), 3823–3835 (2013)Google Scholar
  25. 25.
    Huang, X., Wang, J.: Real-time estimation of center of gravity position for lightweight vehicles using combined AKF–EKF method. IEEE Trans. Veh. Technol. 63(9), 4221–4231 (2014)Google Scholar
  26. 26.
    Xin, Q., Shi, Z.: Robust adaptive backstepping controller design for aircraft autonomous short landing in the presence of uncertain aerodynamics. J. Aerosp. Eng. 31(2), 04018005 (2018)Google Scholar
  27. 27.
    Xin, Q., Shi, Z.: Prediction and recovery of aircraft unstable nonlinear phenomena using bifurcation analysis and backstepping method. J. Comput. Nonlinear Dyn. 11(6), 061007 (2016)Google Scholar
  28. 28.
    Imsland, L., Johansen, T., Fossen, T., Kalkkuhl, J., Suissa, A.: Vehicle velocity estimation using modular nonlinear observers. In: Proceedings of the 44th IEEE Conference on Decision and Control (CDC), pp. 6728–6733 (2005)Google Scholar
  29. 29.
    Rajamani, R.: Vehicle Dynamics and Control. Springer, New York (2011)zbMATHGoogle Scholar
  30. 30.
    Imslanda, L., Johansena, T.A., Fossena, T.I., Grip, H.F., Kalkkuhlb, J.C., Suissab, J.: Vehicle velocity estimation using nonlinear observers. Automatica 42(12), 2091–2103 (2006)MathSciNetGoogle Scholar
  31. 31.
    Sun, F., Huang, X., Rudolph, J., Lolenkod, K.: Vehicle state estimation for anti-lock control with nonlinear observer. Control Eng. Pract. 43, 69–84 (2015)Google Scholar
  32. 32.
    Pacejka, H.: Tire and Vehicle Dynamics, 3rd edn. Butterworth-Heinemann, Waltham, MA (2012)Google Scholar
  33. 33.
    Hahn, J.O., Rajamani, R., Alexander, L.: GPS-based real-time identification of tire-road friction coefficient. IEEE Trans. Control Syst. Technol. 10(3), 331–343 (2002)Google Scholar
  34. 34.
    She, J., Makino, K., Ouyang, L.: Estimation of normalized longitudinal force for an electric cart using equivalent-input-disturbance approach. IEEE Trans. Veh. Technol. 63(8), 3642–3650 (2014)Google Scholar
  35. 35.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River, NJ (2002)zbMATHGoogle Scholar
  36. 36.
    Mechanical Simulation Corporation. Ann Arbor, MI 48103, (2019). Accessed 29 Jan 2019

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Industrial Control Technology, College of Control Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations