Medical image cipher using hierarchical diffusion and non-sequential encryption

  • Junxin ChenEmail author
  • Lei Chen
  • Leo Yu Zhang
  • Zhi-liang Zhu
Original Paper


This paper presents a medical image cipher with hierarchical diffusion and non-sequential encryption mechanism. An improved permutation approach is developed, which can contribute to not only image shuffling but also lightweight pixel modification at the same time. Therefore, diffusion property of the proposed scheme is achieved from both the permutation and diffusion phases, and hierarchical diffusion effect is thus obtained. Besides, non-sequential visiting mechanism is developed to encrypt the plain pixels in secret order; in other words, pixel visiting order is exploited as extra encryption factor in addition to the traditional pixel location and gray value. With hyper-chaotic Lorenz system employed as key stream generator, a complete image encryption scheme is finally constructed. Experimental results and security analyses validate the effectiveness and superiority of the proposed cipher.


Image encryption Medical image Hierarchical diffusion Non-sequential encryption 



This work is funded by the National Natural Science Foundation of China (No. 61802055), Fundamental Research Funds for the Central Universities (No. N171903003), Postdoctoral Science Foundation of Northeastern University (No. 20180101), China Postdoctoral Science Foundation (No. 2018M630301). Thanks to Dr Zhongyun Hua (Harbin Institute of Technology Shenzhen Graduate School) for his valuable suggestions. Thanks to Prof. Yicong Zhou (University of Macau) for his selfless suggestions on information security and technical writing, Junxin Chen has started his Postdoctoral Fellowship under the UM Macao Talent Program with Prof. Zhou’s supervision from 01/01/2019.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hua, Z., Yi, S., Zhou, Y.: Medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 144, 134–144 (2018)CrossRefGoogle Scholar
  2. 2.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 08(06), 1259–1284 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mao, Y., Chen, G., Lian, S.: A novel fast image encryption scheme based on 3D chaotic baker maps. Int. J. Bifurc. Chaos 14(10), 3613–3624 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lian, S., Sun, J., Wang, Z.: A block cipher based on a suitable use of the chaotic standard map. Chaos Solitons Fractals 26(1), 117–129 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Belazi, A., Ellatif, A.A.A., Belghith, S.: A novel image encryption scheme based on substitution–permutation network and chaos. Signal Process. 128, 155–170 (2016)CrossRefGoogle Scholar
  8. 8.
    Patidar, V., Pareek, N., Sud, K.: A new substitution–diffusion based image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3056–3075 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, W., Yu, H., Zhao, Y.-L., Zhu, Z.-L.: Image encryption based on three-dimensional bit matrix permutation. Signal Process. 118, 36–50 (2016)CrossRefGoogle Scholar
  10. 10.
    Wong, K., Kwok, B.S., Law, W.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372(15), 2645–2652 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S.M., Mosavi, M.R.: A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimed. Tools Appl. 71(3), 1469 (2014)CrossRefGoogle Scholar
  12. 12.
    Tong, X.: The novel bilateral-diffusion image encryption algorithm with dynamical compound chaos. J. Syst. Softw. 85(4), 850–858 (2012)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Wong, K., Liao, X., Xiang, T., Chen, G.: A chaos-based image encryption algorithm with variable control parameters. Chaos Solitons Fractals 41(4), 1773–1783 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wong, K., Kwok, B.S., Yuen, C.: An efficient diffusion approach for chaos-based image encryption. Chaos Solitons Fractals 41(5), 2652–2663 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Diaconu, A.-V.: Circular inter-intra pixels bit-level permutation and chaos-based image encryption. Inf. Sci. 355, 314–327 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhu, Z., Zhang, W., Wong, K., Yu, H.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 181(6), 1171–1186 (2011)CrossRefGoogle Scholar
  17. 17.
    Xu, L., Li, Z., Li, J., Hua, W.: A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78, 17–25 (2016)CrossRefGoogle Scholar
  18. 18.
    Chen, J., Zhu, Z., Zhang, L., Zhang, Y., Yang, B.: Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Signal Process. 142, 340–353 (2018)CrossRefGoogle Scholar
  19. 19.
    Guesmi, R., Farah, M., Kachouri, A., Samet, M.: A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2. Nonlinear Dyn. 3(83), 1123–1136 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wu, J., Liao, X., Yang, B.: Image encryption using 2D Hénon-sine map and DNA approach. Signal Process. 153, 11–23 (2018)CrossRefGoogle Scholar
  21. 21.
    Enayatifar, R., Guimarães, F.G., Siarry, P.: Index-based permutation–diffusion in multiple-image encryption using DNA sequence. Opt. Lasers Eng. 115, 131–140 (2019)CrossRefGoogle Scholar
  22. 22.
    Hua, Z., Zhou, B., Zhou, Y.: Sine-transform-based chaotic system with FPGA implementation. IEEE Trans. Ind. Electron. 65(3), 2557–2566 (2018)CrossRefGoogle Scholar
  23. 23.
    Sahari, M.L., Boukemara, I.: A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption. Nonlinear Dyn. 94(1), 723–744 (2018)CrossRefGoogle Scholar
  24. 24.
    Asgari-Chenaghlu, M., Balafar, M.-A., Feizi-Derakhshi, M.-R.: A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Signal Process. 157, 1–13 (2019)CrossRefGoogle Scholar
  25. 25.
    Zahmoul, R., Ejbali, R., Zaied, M.: Image encryption based on new Beta chaotic maps. Opt. Lasers Eng. 96, 39–49 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.-Q., Wang, X.-Y.: A new image encryption algorithm based on non-adjacent coupled map lattices. Appl.Soft Comput. 26, 10–20 (2015)CrossRefGoogle Scholar
  27. 27.
    Sun, F., Lü, Z., Liu, S.: A new cryptosystem based on spatial chaotic system. Opt. Commun. 283(10), 2066–2073 (2010)CrossRefGoogle Scholar
  28. 28.
    Hussain, I., Ahmed, J., Hussain, A.: An image encryption technique based on coupled map lattice and one-time S-boxes based on complex chaotic system. J. Intell. Fuzzy Syst. 29(4), 1493–1500 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Belazi, A., Khan, M., El-Latif, A.A.A., Belghith, S.: Efficient cryptosystem approaches: S-boxes and permutation-substitution-based encryption. Nonlinear Dyn. 87(1), 337–361 (2017)CrossRefGoogle Scholar
  30. 30.
    Hussain, I.: Optical image encryption based on s-box transformation and fractional Hartley transform. J. Vib. Control 22(4), 1143–1146 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ullah, A., Jamal, S.S., Shah, T.: A novel construction of substitution box using a combination of chaotic maps with improved chaotic range. Nonlinear Dyn. 88(4), 2757–2769 (2017)CrossRefGoogle Scholar
  32. 32.
    Kumar, M., Vaish, A.: An efficient encryption-then-compression technique for encrypted images using SVD. Digital Signal Process. 60, 81–89 (2017)CrossRefGoogle Scholar
  33. 33.
    Hamdi, M., Rhouma, R., Belghith, S.: A selective compression-encryption of images based on SPIHT coding and Chirikov standard map. Signal Process. 131, 514–526 (2017)CrossRefGoogle Scholar
  34. 34.
    Özkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92(2), 305–313 (2018)CrossRefGoogle Scholar
  35. 35.
    Fu, C., Meng, W., Zhan, Y., Zhu, Z., Lau, F.C.M., Tse, C.K., Ma, H.: An efficient and secure medical image protection scheme based on chaotic maps. Comput. Biol. Med. 43(8), 1000–1010 (2013)CrossRefGoogle Scholar
  36. 36.
    Zhang, L., Zhu, Z., Yang, B., Liu, W., Zhu, H., Zou, M.: Cryptanalysis and improvement of an efficient and secure medical image protection scheme. Math. Probl. Eng. 2015, 1–11 (2015)Google Scholar
  37. 37.
    Chen, J., Zhu, Z., Fu, C., Zhang, L., Zhang, Y.: An image encryption scheme using nonlinear inter-pixel computing and swapping based permutation approach. Commun. Nonlinear Sci. Numer. Simul. 23, 294–310 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Cao, W., Zhou, Y., Chen, C.L.P., Xia, L.: Medical image encryption using edge maps. Signal Process. 132, 96–109 (2017)CrossRefGoogle Scholar
  39. 39.
    Nematzadeh, H., Enayatifar, R., Motameni, H., Guimarães, F.G., Coelho, V.N.: Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices. Opt. Lasers Eng. 110, 24–32 (2018)CrossRefGoogle Scholar
  40. 40.
    Kanso, A., Ghebleh, M.: An efficient and robust image encryption scheme for medical applications. Commun. Nonlinear Sci. Numer. Simul. 24, 98–116 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhang, W., Wong, K., Yu, H., Zhu, Z.: A symmetric color image encryption algorithm using the intrinsic features of bit distributions. Commun. Nonlinear Sci. Numer. Simul. 18(3), 584–600 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Chen, L., Wang, S.: Differential cryptanalysis of a medical image cryptosystem with multiple rounds. Comput. Biol. Med. 65, 69–75 (2015)CrossRefGoogle Scholar
  43. 43.
    Jolfaei, A., Wu, X., Muthukkumarasamy, V.: On the security of permutation-only image encryption schemes. IEEE Trans. Inf. Forensics Secur. 11(2), 235–246 (2016)CrossRefGoogle Scholar
  44. 44.
    Zhang, L.Y., Liu, Y., Wong, K.-W., Pareschi, F., Zhang, Y., Rovatti, R., Setti, G.: On the security of a class of diffusion mechanisms for image encryption. IEEE Trans. Cybern. 99, 1–13 (2017)CrossRefGoogle Scholar
  45. 45.
    Zhang, Y., Xiao, D., Wen, W., Wong, K.: On the security of symmetric ciphers based on DNA coding. Inf. Sci. 289, 254–261 (2014)CrossRefzbMATHGoogle Scholar
  46. 46.
    Zhang, W., Wong, K., Yu, H., Zhu, Z.: An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2066–2080 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Su, M., Wen, W., Zhang, Y.: Security evaluation of bilateral-diffusion based image encryption algorithm. Nonlinear Dyn. 77, 243–246 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Preishuber, M., Hutter, T., Katzenbeisser, S., Uhl, A.: Depreciating motivation and empirical security analysis of chaos-based image and video encryption. IEEE Trans. Inf. Forensics Secur. 13(9), 2137–2150 (2018)CrossRefGoogle Scholar
  49. 49.
    Wang, K., Zou, L., Song, A., He, Z., et al.: On the security of 3d cat map based symmetric image encryption scheme. Phys. Lett. A 343(6), 432–439 (2005)CrossRefzbMATHGoogle Scholar
  50. 50.
    Zhou, N., Pan, S., Cheng, S., Zhou, Z.: Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt. Laser Technol. 82, 121–133 (2016)CrossRefGoogle Scholar
  51. 51.
    Li, Z., Peng, C., Li, L., Zhu, X.: A novel plaintext-related image encryption scheme using hyper-chaotic system. Nonlinear Dyn. 94(2), 1319–1333 (2018)CrossRefGoogle Scholar
  52. 52.
    Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix: Fast encryption and authentication in a single cryptographic primitive. In: International workshop on fast software encryption, pp. 330–346. Springer (2003)Google Scholar
  53. 53.
    Paul, S., Preneel, B.: Near optimal algorithms for solving differential equations of addition with batch queries. In: International conference on cryptology in India, pp. 90–103. Springer (2005)Google Scholar
  54. 54.
    Zhang, L.Y.: Design and analysis of multimedia cryptosystems. Ph.D. thesis, City University of HongkongGoogle Scholar
  55. 55.
    Li, Y., Liu, X., Chen, G., Liao, X.: A new hyperchaotic Lorenz-type system: generation, analysis, and implementation. Int. J. Circuit Theory Appl. 39(8), 865–879 (2011)Google Scholar
  56. 56.
    Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption, cyber journals: multidisciplinary journals in science and technology. JSAT 1(2), 31–38 (2011)Google Scholar
  57. 57.
    IEEE standard for floating-point arithmetic: IEEE Std 754–2008, pp. 1–70 (2008)Google Scholar
  58. 58.
    Wu, Y., Zhou, Y., Noonan, J.P., Agaian, S.S.: Design of image cipher using Latin squares. Inf. Sci. 264, 317–339 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Junxin Chen
    • 1
    Email author
  • Lei Chen
    • 2
  • Leo Yu Zhang
    • 3
  • Zhi-liang Zhu
    • 4
  1. 1.Sino-Dutch Biomedical and Information Engineering SchoolNortheastern UniversityShenyangChina
  2. 2.School of SciencesBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.School of Information TechnologyDeakin UniversityGeelongAustralia
  4. 4.Software CollegeNortheastern UniversityShenyangChina

Personalised recommendations