New doubly-anomalous Parrondo’s games suggest emergent sustainability and inequality
- 33 Downloads
Abstract
Parrondo’s games to date have largely focused on the dynamics of capital mean, and not capital spread—the potential of the framework in modelling ecological and socioeconomic sustainability and inequality has thus been ignored. Based on behavioural heuristics of distinct individualistic and multipartite interactive strategies, we introduce a novel multi-agent Parrondo game structure with dynamics dependent upon local inequality. Intriguingly, we observe the presence of doubly-anomalous scenarios, in which there is paradoxical population growth despite both pure strategies being losing, simultaneously accompanied by a suppression of inter-population capital variance to within constant bounds. Ecologically, this reflects sustainable population proliferation amidst disadvantageous conditions; the converse scenario in turn corresponds to inequality-plagued unsustainable growth. Different connectivity topologies, such as scale-free and random networks, are also investigated.
Keywords
Parrondo’s paradox Population dynamics Ecology Game theory Complexity Cooperative ParrondoNotes
Funding
Kang Hao Cheong acknowledges the support of SUTD Start-up Research Grant (SRG).
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Landa, D., Meirowitz, A.: Game theory, information, and deliberative democracy. Am. J. Polit. Sci. 53, 427–444 (2009)CrossRefGoogle Scholar
- 2.Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)CrossRefGoogle Scholar
- 3.Han, Z., Niyato, D., Saad, W., Başar, T., Hjørungnes, A.: Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
- 4.Li, X., Gao, L., Li, W.: Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling. Expert Syst. Appl. 39, 288–297 (2012)CrossRefGoogle Scholar
- 5.Smith, J.M.: The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47, 209–221 (1974)MathSciNetCrossRefGoogle Scholar
- 6.Samuelson, L.: Evolution and game theory. J. Econ. Perspect. 16, 47–66 (2002)CrossRefGoogle Scholar
- 7.Harmer, G.P., Abbott, D.: Losing strategies can win by Parrondo’s paradox. Nature 402, 864 (1999)CrossRefGoogle Scholar
- 8.Harmer, G.P., Abbott, D.: Parrondo’s paradox. Stat. Sci. 14, 206–213 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85, 5226–5229 (2000)CrossRefGoogle Scholar
- 10.Toral, R.: Cooperative Parrondo’s games. Fluct. Noise Lett. 01, L7–L12 (2001)MathSciNetCrossRefGoogle Scholar
- 11.Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms. J. Electron Spectrosc. Relat. Phenom. 227, 31–39 (2018)CrossRefGoogle Scholar
- 12.Harmer, G.P., Abbott, D.: A review of Parrondo’s paradox. Fluct. Noise Lett. 02, R71–R107 (2002)CrossRefGoogle Scholar
- 13.Abbott, D.: Asymmetry and disorder: a decade of Parrondo’s paradox. Fluct. Noise Lett. 09, 129–156 (2010)CrossRefGoogle Scholar
- 14.Ajdari, A., Prost, J.: Drift induced by a periodic potential of low symmetry: pulsed dielectrophoresis. C. R. Acad. Sci. Paris Série II 315, 1635–1639 (1993)Google Scholar
- 15.Rousselet, J., Salome, L., Ajdari, A., Prostt, J.: Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446 (1994)CrossRefGoogle Scholar
- 16.Cao, F.J., Dinis, L., Parrondo, J.M.R.: Feedback control in a collective flashing ratchet. Phys. Rev. Lett. 93, 040603 (2004)CrossRefGoogle Scholar
- 17.Lee, Y., Allison, A., Abbott, D., Stanley, H.E.: Minimal Brownian ratchet: an exactly solvable model. Phys. Rev. Lett. 91, 220601 (2003)MathSciNetCrossRefGoogle Scholar
- 18.Danca, M.-F., Fečkan, M., Romera, M.: Generalized form of Parrondo’s paradoxical game with applications to chaos control. Int. J. Bifurcat. Chaos 24, 1450008 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Danca, M.-F., Tang, W.K., Wang, Q., Chen, G.: Suppressing chaos in fractional-order systems by periodic perturbations on system variables. Eur. Phys. J. B 86, 79 (2013)MathSciNetCrossRefGoogle Scholar
- 20.Chau, N.P.: Controlling chaos by periodic proportional pulses. Phys. Lett. A 234, 193–197 (1997)CrossRefGoogle Scholar
- 21.Allison, A., Abbott, D.: Control systems with stochastic feedback. Chaos 11, 715–724 (2001)CrossRefzbMATHGoogle Scholar
- 22.Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038–1040 (1987)MathSciNetCrossRefGoogle Scholar
- 23.Pinsky, R., Scheutzow, M.: Some remarks and examples concerning the transient and recurrence of random diffusions. Ann. Inst. Henri Poincaré B 28, 519 (1992)zbMATHGoogle Scholar
- 24.Harmer, G.P., Abbott, D., Taylor, P.G., Pearce, C.E.M., Parrondo, J.M.R.: Information entropy and Parrondo’s discrete-time ratchet. AIP Conf. Proc. 502, 544–549 (2000)CrossRefzbMATHGoogle Scholar
- 25.Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017)CrossRefGoogle Scholar
- 26.Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107, 225–239 (2002)CrossRefzbMATHGoogle Scholar
- 27.Flitney, A.P., Abbott, D.: Quantum models of Parrondo’s games. Physica A 324, 152–156 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Flitney, A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 02, R175–R187 (2002)MathSciNetCrossRefGoogle Scholar
- 29.Lee, C.F., Johnson, N.F., Rodriguez, F., Quiroga, L.: Quantum coherence, correlated noise and Parrondo games. Fluct. Noise Lett. 02, L293–L298 (2002)MathSciNetCrossRefGoogle Scholar
- 30.Lee, C.F., Johnson, N.F.: Exploiting randomness in quantum information processing. Phys. Lett. A 301, 343–349 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Banerjee, S., Chandrashekar, C.M., Pati, A.K.: Enhancement of geometric phase by frustration of decoherence: a Parrondo-like effect. Phys. Rev. A 87, 042119 (2013)CrossRefGoogle Scholar
- 32.de Franciscis, S., d’Onofrio, A.: Spatiotemporal bounded noises and transitions induced by them in solutions of the real Ginzburg–Landau model. Phys. Rev. E 86, 021118 (2012)CrossRefGoogle Scholar
- 33.Cheong, K.H., Tan, Z.X., Xie, N.-G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 34889 (2016)CrossRefGoogle Scholar
- 34.Reed, F.A.: Two-locus epistasis with sexually antagonistic selection: a genetic Parrondo’s paradox. Genetics 176, 1923–1929 (2007)CrossRefGoogle Scholar
- 35.Cheong, K.H., Koh, J.M., Jones, M.C.: Entangled mortality: a biological Parrondo’s paradox. Science E-Letter, 29 August 2018. http://science.sciencemag.org/content/360/6393/1075/tabe-letters
- 36.Wolf, D.M., Vazirani, V.V., Arkin, A.P.: Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227–253 (2005)MathSciNetCrossRefGoogle Scholar
- 37.Libby, E., Conlin, P.L., Kerr, B., Ratcliff, W.C.: Stabilizing multicellularity through ratcheting. Philos. Trans. R. Soc. B Lond. Biol. Sci. 371, 20150444 (2016)CrossRefGoogle Scholar
- 38.Cheong, K.H., Koh, J.M., Jones, M.C.: Multicellular survival as a consequence of Parrondo’s paradox. Proc. Natl. Acad. Sci. 115, E5258–5259 (2018)CrossRefGoogle Scholar
- 39.Williams, P.D., Hastings, A.: Paradoxical persistence through mixed-system dynamics: towards a unified perspective of reversal behaviours in evolutionary ecology. Proc. R. Soc. Lond. B Biol. Sci. 278, 1281–1290 (2011)CrossRefGoogle Scholar
- 40.Kussell, E., Leibler, S.: Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005)CrossRefGoogle Scholar
- 41.Acar, M., van Oudenaarden, J.T.M.A.: Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471 (2008)CrossRefGoogle Scholar
- 42.Jansen, V.A.A., Yoshimura, J.: Populations can persist in an environment consisting of sink habitats only. Proc. Natl. Acad. Sci. 95, 3696–3698 (1998)CrossRefGoogle Scholar
- 43.Tan, Z.X., Cheong, K.H.: Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. eLife 6, e21673 (2017)CrossRefGoogle Scholar
- 44.Koh, J.M., Xie, N., Cheong, K.H.: Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth. Nonlinear Dyn. 94, 1467–1477 (2018)CrossRefGoogle Scholar
- 45.Sagués, F., Sancho, J.M., García-Ojalvo, J.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79, 829–882 (2007)CrossRefGoogle Scholar
- 46.Buceta, J., Lindenberg, K., Parrondo, J.M.R.: Stationary and oscillatory spatial patterns induced by global periodic switching. Phys. Rev. Lett. 88, 024103 (2002)CrossRefGoogle Scholar
- 47.Lucas, C.H., Graham, W.M., Widmer, C.: Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Adv. Mar. Biol. 63, 133–196 (2012)CrossRefGoogle Scholar
- 48.Baldauf, S.L., Doolittle, W.F.: Origin and evolution of the slime molds (mycetozoa). Proc. Natl. Acad. Sci. 94, 12007–12012 (1997)CrossRefGoogle Scholar
- 49.Bastidas, R.J., Heitman, J.: Trimorphic stepping stones pave the way to fungal virulence. Proc. Natl. Acad. Sci. 106, 351–352 (2009)CrossRefGoogle Scholar
- 50.Perc, M.: The Matthew effect in empirical data. J. R. Soc. Interface 11, 20140378 (2014)CrossRefGoogle Scholar
- 51.Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the Allee effect. Trends. Ecol. Evol. 14, 405–410 (1999)CrossRefGoogle Scholar
- 52.Mihailovic, Z., Rajkovic, M.: Synchronous cooperative Parrondo’s games. Fluct. Noise Lett. 03, 389 (2003)MathSciNetCrossRefGoogle Scholar
- 53.Erdős, P., Rényi, A.: On random graphs i. Publ. Math. Debr. 6, 290–297 (1959)zbMATHGoogle Scholar
- 54.Gómez-Gardeñes, J., Moreno, Y.: From scale-free to Erdos-Rényi networks. Phys. Rev. E 73, 056124 (2006)CrossRefGoogle Scholar
- 55.Ye, Y., Cheong, K.H., Cen, Y.-W., Xie, N.-G.: Effects of behavioral patterns and network topology structures on Parrondo’s paradox. Sci. Rep. 6, 37028 (2016)CrossRefGoogle Scholar
- 56.Duan, F., Chapeau-Blondeau, F., Abbott, D.: Stochastic resonance in a parallel array of nonlinear dynamical elements. Phys. Lett. A 372, 2159–2166 (2008)CrossRefzbMATHGoogle Scholar
- 57.Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)CrossRefGoogle Scholar
- 58.Goychuk, I., Hänggi, P.: Non-Markovian stochastic resonance. Phys. Rev. Lett. 91, 070601 (2003)CrossRefGoogle Scholar
- 59.Dykman, M.I., McClintock, P.V.E.: What can stochastic resonance do? Nature 391, 344 (1998)CrossRefGoogle Scholar
- 60.Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 61.Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–187 (1999)CrossRefGoogle Scholar
- 62.Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)CrossRefGoogle Scholar
- 63.Kasthurirathna, D., Piraveenan, M.: Emergence of scale-free characteristics in socio-ecological systems with bounded rationality. Sci. Rep. 5, 10448 (2015)CrossRefGoogle Scholar
- 64.Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312 (2005)CrossRefGoogle Scholar
- 65.Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97, 11149–11152 (2000)CrossRefGoogle Scholar
- 66.Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998)CrossRefzbMATHGoogle Scholar
- 67.Kasthurirathna, D., Piraveenan, M., Harré, M.: Influence of topology in the evolution of coordination in complex networks under information diffusion constraints. Eur. Phys. J. B 87, 3 (2014)MathSciNetCrossRefGoogle Scholar
- 68.Pan, R.K., Sinha, S.: Modular networks with hierarchical organization: the dynamical implications of complex structure. Pramana 71, 331 (2009)CrossRefGoogle Scholar
- 69.Foley, J.A., et al.: Solutions for a cultivated planet. Nature 478, 337 (2011)CrossRefGoogle Scholar
- 70.Lineweaver, C.H., Fenner, Y., Gibson, B.K.: The galactic habitable zone and the age distribution of complex life in the milky way. Science 303, 59–62 (2004)CrossRefGoogle Scholar
- 71.Triandis, H.: Collectivism v. Individualism: A Reconceptualisation of a Basic Concept in Cross-Cultural Social Psychology, pp. 60–95. Palgrave Macmillan, London (1988)Google Scholar
- 72.Hui, C.: Measurement of individualism-collectivism. J. Res. Personal. 22, 17–36 (1988)CrossRefGoogle Scholar
- 73.Singh, R.K., Sinha, S.: Optimal interdependence enhances the dynamical robustness of complex systems. Phys. Rev. E 96, 020301 (2017)CrossRefGoogle Scholar