Advertisement

Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow

  • Antoine BlanchardEmail author
  • Lawrence A. Bergman
  • Alexander F. Vakakis
Original Paper
  • 74 Downloads

Abstract

We computationally investigate flow past a three-dimensional linearly sprung cylinder undergoing vortex-induced vibration (VIV) transverse to the free stream and equipped with an internal dissipative rotational nonlinear energy sink (NES). The rotational NES consists of a line mass allowed to rotate at constant radius about the cylinder axis, with linearly damped rotational motion. We consider a value of the Reynolds number (\(\textit{Re}=10{,}000\), based on the cylinder diameter and free-stream velocity) at which flow past a linearly sprung cylinder with no NES is three-dimensional and fully turbulent. For this \(\textit{Re}\) value, we show that the rotational NES is capable of passively harnessing a substantial amount of kinetic energy from the rectilinear motion of the cylinder, leading to a significant suppression of cylinder oscillation and a nearly twofold reduction in drag. The results presented herein are of practical significance since they demonstrate a novel passive mechanism for VIV suppression and drag reduction in a high-\(\textit{Re}\) bluff body flow, and lay down the groundwork for designing nonlinear energy sinks with a view to enhancing the performance of VIV-induced power generation in marine currents.

Keywords

Vortex-induced vibration Nonlinear energy sink Energy harvesting Turbulent vortex shedding 

Notes

Acknowledgements

The authors gratefully acknowledge use of the facilities at the Argonne National Laboratory. The first author acknowledges the Computational Science and Engineering Fellowship program at the University of Illinois at Urbana–Champaign. This work was supported in part by National Science Foundation Grant CMMI-1363231. Any opinion, findings, and conclusions or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Funding

This study was partially funded by National Science Foundation Grant CMMI-1363231. A. B. was partially supported by the Computational Science and Engineering Fellowship program at the University of Illinois at Urbana–Champaign.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Païdoussis, M.P., Price, S.J., De Langre, E.: Fluid–Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Owen, J.C., Bearman, P.W., Szewczyk, A.A.: Passive control of VIV with drag reduction. J. Fluids Struct. 15, 597–605 (2001)CrossRefGoogle Scholar
  4. 4.
    Bernitsas, M.M., Raghavan, K.: Reduction/suppression of VIV of circular cylinders through roughness distribution at \(8\times 10^3 < Re < 1.5 \times 10^5\). In: ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, pp. 1001–1005 (2008)Google Scholar
  5. 5.
    Assi, G.R.S., Bearman, P.W., Kitney, N., Tognarelli, M.A.: Suppression of wake-induced vibration of tandem cylinders with free-to-rotate control plates. J. Fluids Struct. 26, 1045–1057 (2010)CrossRefGoogle Scholar
  6. 6.
    Bernitsas, M.M., Raghavan, K., Ben-Simon, Y., Garcia, E.M.: VIVACE (Vortex Induced Vibration Aquatic Clean Energy): a new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct. Eng. 130, 041101 (2008)CrossRefGoogle Scholar
  7. 7.
    Bernitsas, M.M., Ben-Simon, Y., Raghavan, K., Garcia, E.M.: The VIVACE converter: model tests at high damping and Reynolds number around \(10^5\). J. Offshore Mech. Arct. Eng. 131, 011102 (2009)CrossRefGoogle Scholar
  8. 8.
    Barrero-Gil, A., Pindado, S., Avila, S.: Extracting energy from vortex-induced vibrations: a parametric study. Appl. Math. Modell. 36, 3153–3160 (2012)CrossRefGoogle Scholar
  9. 9.
    Grouthier, C., Michelin, S., Bourguet, R., Modarres-Sadeghi, Y., De Langre, E.: On the efficiency of energy harvesting using vortex-induced vibrations of cables. J. Fluids Struct. 49, 427–440 (2014)CrossRefGoogle Scholar
  10. 10.
    Ng, K.W., Lam, W.H., Ng, K.C.: 2002–2012: 10 years of research progress in horizontal-axis marine current turbines. Energies 6, 1497–1526 (2013)CrossRefGoogle Scholar
  11. 11.
    Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, New York (2008)zbMATHGoogle Scholar
  12. 12.
    Gendelman, O.V., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70, 1655–1677 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nucera, F., Iacono, F.L., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313, 57–76 (2008)CrossRefGoogle Scholar
  14. 14.
    Wierschem, N.E., Luo, J., Hubbard, S., Fahnestock, L.A., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Experimental testing of a large 9-story structure equipped with multiple nonlinear energy sinks subjected to an impulsive loading. In: Structures Congress 2013: Bridging Your Passion with Your Profession, pp. 2241–2252 (2013)Google Scholar
  15. 15.
    Bellet, R., Cochelin, B., Herzog, P., Mattei, P.O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329, 2768–2791 (2010)CrossRefGoogle Scholar
  16. 16.
    Quinn, D.D., Triplett, A.L., Vakakis, A.F., Bergman, L.A.: Energy harvesting from impulsive loads using intentional essential nonlinearities. J. Vib. Acoust. 133, 011004 (2011)CrossRefGoogle Scholar
  17. 17.
    Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J. Sound Vib. 333, 4444–4457 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Tang, L., Liu, K.: Piezoelectric energy harvesting with a nonlinear energy sink. J. Intell. Mater. Syst. Struct. 28, 307–322 (2017)CrossRefGoogle Scholar
  19. 19.
    Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 391, 35–49 (2017)CrossRefGoogle Scholar
  20. 20.
    Remick, K., Quinn, D.D., McFarland, D.M., Bergman, L., Vakakis, A.: High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. J. Sound Vib. 370, 259–279 (2016)CrossRefGoogle Scholar
  21. 21.
    Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)CrossRefGoogle Scholar
  22. 22.
    Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: transient responses. J. Sound Vib. 333, 4859–4880 (2014)CrossRefGoogle Scholar
  23. 23.
    Quinn, D.D., Triplett, A.L., Bergman, L.A., Vakakis, A.F.: Comparing linear and essentially nonlinear vibration-based energy harvesting. J. Vib. Acoust. 133, 011001 (2011)CrossRefGoogle Scholar
  24. 24.
    Tumkur, R.K.R., Calderer, R., Masud, A., Pearlstein, A.J., Bergman, L.A., Vakakis, A.F.: Computational study of vortex-induced vibration of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. J. Fluids Struct. 40, 214–232 (2013)CrossRefGoogle Scholar
  25. 25.
    Tumkur, R.K.R., Domany, E., Gendelman, O.V., Masud, A., Bergman, L.A., Vakakis, A.F.: Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun. Nonlinear Sci. Numer. Simul. 18, 1916–1930 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tumkur, R.K.R., Pearlstein, A.J., Masud, A., Gendelman, O.V., Blanchard, A.B., Bergman, L.A., Vakakis, A.F.: Effect of an internal nonlinear rotational dissipative element on vortex shedding and vortex-induced vibration of a sprung circular cylinder. J. Fluid Mech. 828, 196–235 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Blanchard, A.B., Gendelman, O.V., Bergman, L.A., Vakakis, A.F.: Capture into slow-invariant-manifold in the fluid–structure dynamics of a sprung cylinder with a nonlinear rotator. J. Fluids Struct. 63, 155–173 (2016)CrossRefGoogle Scholar
  28. 28.
    Blanchard, A.B., Bergman, L.A., Vakakis, A.F., Pearlstein, A.J.: Coexistence of multiple long-time solutions for two-dimensional laminar flow past a linearly-sprung circular cylinder with a rotational nonlinear energy sink. Phys. Rev. Fluids (2018, submitted)Google Scholar
  29. 29.
    Mehmood, A., Nayfeh, A.H., Hajj, M.R.: Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77, 667–680 (2014)CrossRefGoogle Scholar
  30. 30.
    Dai, H.L., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 42, 22–36 (2017)CrossRefGoogle Scholar
  31. 31.
    Dongyang, C., Abbas, L.K., Guoping, W., Xiaoting, E., Marzocca, P.: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs). Nonlinear Dyn. 94, 925–957 (2018)CrossRefGoogle Scholar
  32. 32.
    Sigalov, G., Gendelman, O.V., Al-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69, 1693–1704 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Roshko, A.: On the development of turbulent wakes from vortex streets. NACA TN 2913 (1954)Google Scholar
  34. 34.
    Blanchard, A., Bergman, L.A., Vakakis, A.F.: Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator. Phys. D Nonlinear Phenom. 350, 26–44 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: nek5000 Web page (2008). http://nek5000.mcs.anl.gov
  36. 36.
    Prasanth, T.K., Mittal, S.: Effect of blockage on free vibration of a circular cylinder at low \(Re\). Int. J. Numer. Methods in Fluids 58, 1063–1080 (2008)CrossRefzbMATHGoogle Scholar
  37. 37.
    Braza, M., Faghani, D., Persillon, H.: Successive stages and the role of natural vortex dislocations in three-dimensional wake transition. J. Fluid Mech. 439, 1–41 (2001)CrossRefzbMATHGoogle Scholar
  38. 38.
    Dong, S., Karniadakis, G.E.: DNS of flow past a stationary and oscillating cylinder at \(Re=10000\). J. Fluids Struct. 20, 519–531 (2005)CrossRefGoogle Scholar
  39. 39.
    Pontaza, J.P., Chen, H.C.: Three-dimensional numerical simulations of circular cylinders undergoing two degree-of-freedom vortex-induced vibrations. J. Offshore Mech. Arct. Eng. 129, 158–164 (2007)CrossRefGoogle Scholar
  40. 40.
    Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. l’Acad. Sci. Ser. I Math. 332, 265–270 (2001)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Boyd, J.P.: Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods. J. Comput. Phys. 143, 283–288 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tumkur, R.K.R.: Modal interactions and targeted energy transfers in laminar vortex-induced vibrations of a rigid cylinder with strongly nonlinear internal attachments. Ph.D. thesis, University of Illinois at Urbana–Champaign (2014)Google Scholar
  43. 43.
    Barton, D.A.W., Burrow, S.G., Clare, L.R.: Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. 132, 021009 (2010)CrossRefGoogle Scholar
  44. 44.
    Leontini, J.S., Stewart, B.E., Thompson, M.C., Hourigan, K.: Wake state and energy transitions of an oscillating cylinder at low Reynolds number. Phys. Fluids 18, 067101 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Nguyen, L.T.T., Temarel, P.: Numerical simulation of an oscillating cylinder in cross-flow at a Reynolds number of 10,000: forced and free oscillations. In: ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, p. V002T08A022. American Society of Mechanical Engineers (2014)Google Scholar
  46. 46.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Stansby, P.K., Slaouti, A.: Simulation of vortex shedding including blockage by the random-vortex and other methods. Int. J. Numer. Methods Fluids 17, 1003–1013 (1993)CrossRefzbMATHGoogle Scholar
  48. 48.
    Anagnostopoulos, P.: Numerical investigation of response and wake characteristics of a vortex-excited cylinder in a uniform stream. J. Fluids Struct. 8, 367–390 (1994)CrossRefGoogle Scholar
  49. 49.
    Henderson, R.D.: Details of the drag curve near the onset of vortex shedding. Phys. Fluids 7, 2102–2104 (1995)CrossRefGoogle Scholar
  50. 50.
    Shiels, D., Leonard, A., Roshko, A.: Flow-induced vibration of a circular cylinder at limiting structural parameters. J. Fluids Struct. 15, 3–21 (2001)CrossRefGoogle Scholar
  51. 51.
    Fischer, P., Schmitt, M., Tomboulides, A.: Recent developments in spectral element simulations of moving-domain problems. In: Melnik, R., Makarov, R., Belair, J. (eds.) Recent Progress and Modern Challenges in Applied Mathematics. Modeling and Computational Science, pp. 213–244. Springer, New York (2017)Google Scholar
  52. 52.
    Bishop, R.E.D., Hassan, A.Y.: The lift and drag forces on a circular cylinder in a flowing fluid. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 277, 32–50 (1964)Google Scholar
  53. 53.
    Gopalkrishnan, R.: Vortex-induced forces on oscillating bluff cylinders. Technical report, Woods Hole Oceanographic Institution, MA (1993)Google Scholar
  54. 54.
    Norberg, C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17, 57–96 (2003)CrossRefGoogle Scholar
  55. 55.
    Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D.: A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185–207 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Antoine Blanchard
    • 1
    • 2
    Email author
  • Lawrence A. Bergman
    • 1
  • Alexander F. Vakakis
    • 3
  1. 1.Department of Aerospace EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaUSA

Personalised recommendations