Advertisement

Winner-weaken-loser-strengthen rule leads to optimally cooperative interdependent networks

  • Lei Shi
  • Chen Shen
  • Yini Geng
  • Chen Chu
  • Haoran Meng
  • Matjaž Perc
  • Stefano Boccaletti
  • Zhen WangEmail author
Original Paper
  • 74 Downloads

Abstract

We introduce a winner-weaken-loser-strengthen rule and study its effects on how cooperation evolves on interdependent networks. The new rule lowers the learning ability of a player if its payoff is larger than the average payoff of its neighbors, thus enhancing its chance to hold onto its current strategy. Conversely, when a player gaining less than the average payoff of its neighborhood, its learning ability is increased, thus weakening the player by increasing the chance of strategy change. Furthermore, considering the nature of human pursue fairness, we let a loser, someone who has larger learning ability, can benefit from another network, whereas a winner cannot. Our results show that moderate values of the threshold lead to a high cooperation plateau, while too high or too small values of the threshold inhibit cooperation. At moderate thresholds, the flourishing cooperation is attributed to species diversity and equality, whereas a lacking of species diversity determines the vanishing of cooperation. We thus demonstrate that a simple winner-weaken-loser-strengthen rule significantly expands the scope of cooperation on structured populations.

Keywords

Cooperation Evolutionary Game Theory Interdependent Network Winner-Weaken-Loser-Strengthen Rule Coevolution 

Notes

Acknowledgements

We are grateful to Dr. Keke Huang for useful discussions. We acknowledge support from (i) National Natural Science Foundation of China (Grants No. U1803263), the National 1000 Young Talent Plan (No. W099102), the Fundamental Research Funds for the Central Universities (No. 3102017jc03007) and China Computer Federation - Tencent Open Fund (No. IAGR20170119) to Z.W, (ii) the National Natural Science Foundation of China (Grants No. 11671348) to L.S., (iii) the Yunnan Postgraduate Scholarship Award to C.S. and (iv) the Slovenian Research Agency (Grants J1-7009, J1-9112 and P1-0403) to M.P.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211(4489), 1390–1396 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359(6398), 826 (1992)CrossRefGoogle Scholar
  3. 3.
    Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature 428(6983), 646 (2004)CrossRefGoogle Scholar
  4. 4.
    Hauert, C., De Monte, S., Hofbauer, J., Sigmund, K.: Volunteering as red queen mechanism for cooperation in public goods games. Science 296(5570), 1129–1132 (2002)CrossRefGoogle Scholar
  5. 5.
    Parker, G.A., Smith, J.M.: Optimality theory in evolutionary biology. Nature 348(6296), 27 (1990)CrossRefGoogle Scholar
  6. 6.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, X., Wang, L.: Promotion of cooperation induced by appropriate payoff aspirations in a small-world networked game. Phys. Rev. E 77(1), 017103 (2008)CrossRefGoogle Scholar
  8. 8.
    Macy, M.W., Flache, A.: Learning dynamics in social dilemmas. Proc. Natl Acad. Sci. 99(suppl 3), 7229–7236 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Szolnoki, A., Perc, M.: Coevolution of teaching activity promotes cooperation. New J. Phys. 10(4), 043036 (2012)CrossRefGoogle Scholar
  10. 10.
    Tomassini, M., Luthi, L., Giacobini, M.: Hawks and doves on small-world networks. Phys. Rev. E 73(1), 016132 (2006)CrossRefGoogle Scholar
  11. 11.
    Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454(7201), 213 (2008)CrossRefGoogle Scholar
  12. 12.
    Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95(9), 098104 (2005)CrossRefGoogle Scholar
  13. 13.
    Van Segbroeck, S., Santos, F.C., Pacheco, J.M., Lenaerts, T.: Coevolution of cooperation, response to adverse social ties and network structure. Games 1(3), 317–337 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Santos, F.C., Pacheco, J.M.: Risk of collective failure provides an escape from the tragedy of the commons. Proc. Natl Acad. Sci. 108(26), 10421–10425 (2011)CrossRefGoogle Scholar
  15. 15.
    Gömez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Phys. Rev. Lett. 98(10), 108103 (2007)CrossRefGoogle Scholar
  16. 16.
    Rong, Z., Li, X., Wang, X.: Roles of mixing patterns in cooperation on a scale-free networked game. Phys. Rev. E 76(2), 027101 (2007)CrossRefGoogle Scholar
  17. 17.
    Assenza, S., Gömez-Gardeñes, J., Latora, V.: Enhancement of cooperation in highly clustered scale-free networks. Phys. Rev. E 78(1), 017101 (2008)CrossRefGoogle Scholar
  18. 18.
    Poncela, J., Gömez-Gardeñes, J., Moreno, Y.: Cooperation in scale-free networks with limited associative capacities. Phys. Rev. E 83(5), 057101 (2011)CrossRefGoogle Scholar
  19. 19.
    Antonioni, A., Tomassini, M., Buesser, P.: Random diffusion and cooperation in continuous two-dimensional space. J. Theor. Biol. 344, 40–48 (2014)CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Szolnoki, A., Perc, M.: If players are sparse social dilemmas are too: importance of percolation for evolution of cooperation. Sci. Rep. 2, 369 (2012)CrossRefGoogle Scholar
  21. 21.
    Ebel, H., Bornholdt, S.: Coevolutionary games on networks. Phys. Rev. E 66(5), 056118 (2002)CrossRefGoogle Scholar
  22. 22.
    Pacheco, J.M., Traulsen, A., Nowak, M.A.: Coevolution of strategy and structure in complex networks with dynamical linking. Phys. Rev. Lett. 97(25), 258103 (2006)CrossRefGoogle Scholar
  23. 23.
    Szabö, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep. 446(4–6), 97–216 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Perc, M., Jordan, J.J., Rand, D.G., Wang, Z., Boccaletti, S., Szolnoki, A.: Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105(4), 048701 (2010)CrossRefGoogle Scholar
  26. 26.
    Huang, X., Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent networks under targeted attack. Phys. Rev. E 83(6), 065101 (2011)CrossRefGoogle Scholar
  27. 27.
    Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8(1), 40 (2011)CrossRefGoogle Scholar
  28. 28.
    Wang, B., Chen, X., Wang, L.: Probabilistic interconnection between interdependent networks promotes cooperation in the public goods game. J. Stat. Mech.: Theory Exp. 2012(11), P11017 (2012)CrossRefGoogle Scholar
  29. 29.
    Szolnoki, A., Perc, M.: Information sharing promotes prosocial behaviour. New J. Phys. 15(5), 053010 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Gömez-Gardeñes, J., Gracia-Lázaro, C., Floría, L.M., Moreno, Y.: Evolutionary dynamics on interdependent populations. Phys. Rev. E 86(5), 056113 (2012)CrossRefGoogle Scholar
  31. 31.
    Wang, Z., Szolnoki, A., Perc, M.: Interdependent network reciprocity in evolutionary games. Sci. Rep. 3, 1183 (2013)CrossRefGoogle Scholar
  32. 32.
    Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdependent networks. Phys. Rev. E 86(6), 066103 (2012)CrossRefGoogle Scholar
  33. 33.
    Helbing, D.: Globally networked risks and how to respond. Nature 497(7447), 51 (2013)CrossRefGoogle Scholar
  34. 34.
    Luo, C., Zhang, X.-L.: Effect of self-organized interdependence between populations on the evolution of cooperation. Commun. Nonlinear Sci. Numer. Simul. 42, 73 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Szabö, G., Tőke, C.: Evolutionary prisoner’s dilemma game on a square lattice. Phys. Rev. E 58(1), 69 (1997)CrossRefGoogle Scholar
  36. 36.
    Chen, X., et al.: Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat. Commun. 6, 7142 (2015)CrossRefGoogle Scholar
  37. 37.
    Tanaka, G., Hou, X., Ma, X., Edgecombe, G.D., Strausfeld, N.J.: Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502(7471), 364 (2013)CrossRefGoogle Scholar
  38. 38.
    Wang, Z., Szolnoki, A., Perc, M.: Self-organization towards optimally interdependent networks by means of coevolution. New J. Phys. 16(3), 033041 (2014)CrossRefGoogle Scholar
  39. 39.
    Szolnoki, A., Perc, M.: Evolutionary dynamics of cooperation in neutral populations. New J. Phys. 20(1), 013031 (2018)CrossRefGoogle Scholar
  40. 40.
    Szolnoki, A., Mobilia, M., Jiang, L.-L., Szczesny, B., Rucklidge, A.M., Perc, M.: Cyclic dominance in evolutionary games: a review. J. R. Soc. Interface 11(100), 20140735 (2014)CrossRefGoogle Scholar
  41. 41.
    Weitz, J.-S., Eksin, C., Paarporn, K., Brown, S.-P., Ratcliff, W.-C.: An oscillating tragedy of the commons in replicator dynamics with game-environment feedback. Proc. Natl Acad. Sci. 113(47), E7518–E7525 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Statistics and MathematicsYunnan University of Finance and EconomicsKunmingChina
  2. 2.School of SoftwareYunnan UniversityKunmingChina
  3. 3.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  4. 4.Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia
  5. 5.Complexity Science Hub ViennaViennaAustria
  6. 6.CNR Institute for Complex SystemsFlorenceItaly
  7. 7.Unmanned Systems Research InstituteNorthwestern Polytechnical UniversityXi’anChina
  8. 8.School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL)Northwestern Polytechnical UniversityXi’anChina

Personalised recommendations