Visibility graph analysis of temporal irreversibility in sleep electroencephalograms
- 28 Downloads
Abstract
The study of sleep has continued to garner increased attention. However, most studies assume stationarity of sleep electroencephalogram (EEG) signals, whereas they are typically nonlinear and nonstationary. Little work has focused on the time irreversibility of sleep EEG signals. Hence, the aim of this work is to reveal the temporally irreversible structures of rapid-eye-movement (REM) and non-REM sleep using a visibility algorithm, which is robust to nonstationarity and finite-size effect. Results show that the temporal structure of non-REM sleep is more irreversible than that of REM sleep. The degree of irreversibility is highest in slow-wave sleep. Moreover, statistical analysis suggests that aging is the major factor that affects the irreversibility of sleep signals, while gender and body mass index contribute insignificantly. The dominant role of slow oscillations on the irreversible structures of the sleep signals is also indicated.
Keywords
Visibility graph Time irreversibility EEG Sleep stage Empirical mode decomposition NARMANotes
Acknowledgements
The authors acknowledge the financial support from the Fundamental Research Funds for the Central Universities (2017YJS207) and National Natural Science Foundation of China (61771035). H. Xiong thanks the support of China Scholarship Council (201707090024) during her visit to Harvard Medical School.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Weiss, G.: Time-reversibility of linear stochastic processes. J. Appl. Probab. 12(4), 831–836 (1975)MathSciNetzbMATHGoogle Scholar
- 2.Lacasa, L., Nuñez, A., Roldán, É., Parrondo, J.M., Luque, B.: Time series irreversibility: a visibility graph approach. Eur. Phys. J. B 85(6), 1–11 (2012)Google Scholar
- 3.Porta, A., Casali, K.R., Casali, A.G., Gnecchi-Ruscone, T., Tobaldini, E., Montano, N., Lange, S., Geue, D., Cysarz, D., Van Leeuwen, P.: Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295(2), R550–R557 (2008)Google Scholar
- 4.Kawai, R., Parrondo, J., Van den Broeck, C.: Dissipation: the phase-space perspective. Phys. Rev. Lett. 98(8), 080602 (2007)Google Scholar
- 5.Parrondo, J.M., Van den Broeck, C., Kawai, R.: Entropy production and the arrow of time. New J. Phys. 11(7), 073008 (2009)Google Scholar
- 6.Costa, M., Goldberger, A.L., Peng, C.K.: Broken asymmetry of the human heartbeat: loss of time irreversibility in aging and disease. Phys. Rev. Lett. 95(19), 198102 (2005)Google Scholar
- 7.Costa, M.D., Peng, C.K., Goldberger, A.L.: Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc. Eng. 8(2), 88–93 (2008)Google Scholar
- 8.Kennel, M.B.: Testing time symmetry in time series using data compression dictionaries. Phys. Rev. E 69(5), 056208 (2004)MathSciNetGoogle Scholar
- 9.Daw, C., Finney, C., Kennel, M.: Symbolic approach for measuring temporal irreversibility. Phys. Rev. E 62(2), 1912 (2000)Google Scholar
- 10.Porta, A., Guzzetti, S., Montano, N., Gnecchi-Ruscone, T., Furlan, R., Malliani, A.: Time reversibility in short-term heart period variability. In: Computers in Cardiology, vol. 33, pp. 77–80. IEEE (2006)Google Scholar
- 11.Guzik, P., Piskorski, J., Krauze, T., Wykretowicz, A., Wysocki, H.: Heart rate asymmetry by poincaré plots of rr intervals. Biomedizinische Technik 51(4), 272–275 (2006)Google Scholar
- 12.Cammarota, C., Rogora, E.: Time reversal, symbolic series and irreversibility of human heartbeat. Chaos Solitons Fractals 32(5), 1649–1654 (2007)MathSciNetzbMATHGoogle Scholar
- 13.Porporato, A., Rigby, J., Daly, E.: Irreversibility and fluctuation theorem in stationary time series. Phys. Rev. Lett. 98(9), 094101 (2007)Google Scholar
- 14.Casali, K.R., Casali, A.G., Montano, N., Irigoyen, M.C., Macagnan, F., Guzzetti, S., Porta, A.: Multiple testing strategy for the detection of temporal irreversibility in stationary time series. Phys. Rev. E 77(6), 066204 (2008)Google Scholar
- 15.Xia, J., Shang, P., Wang, J., Shi, W.: Classifying of financial time series based on multiscale entropy and multiscale time irreversibility. Physica A 400, 151–158 (2014)Google Scholar
- 16.Hou, F., Zhuang, J., Bian, C., Tong, T., Chen, Y., Yin, J., Qiu, X., Ning, X.: Analysis of heartbeat asymmetry based on multi-scale time irreversibility test. Physica A 389(4), 754–760 (2010)Google Scholar
- 17.Hou, F., Ning, X., Zhuang, J., Huang, X., Fu, M., Bian, C.: High-dimensional time irreversibility analysis of human interbeat intervals. Med. Eng. Phys. 33(5), 633–637 (2011)Google Scholar
- 18.Flanagan, R., Lacasa, L.: Irreversibility of financial time series: a graph-theoretical approach. Phys. Lett. A 380(20), 1689–1697 (2016)Google Scholar
- 19.Nuñez, A.M., Lacasa, L., Gomez, J.P., Luque, B.: Visibility algorithms: a short review. In: Zhang, Y. (ed.) New Frontiers in Graph Theory, pp. 119–152. InTech (2012). https://doi.org/10.5772/34810
- 20.Lacasa, L., Flanagan, R.: Time reversibility from visibility graphs of nonstationary processes. Phys. Rev. E 92(2), 022817 (2015)MathSciNetGoogle Scholar
- 21.Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. 105(13), 4972–4975 (2008)MathSciNetzbMATHGoogle Scholar
- 22.Xiong, H., Shang, P., Xia, J., Wang, J.: Time irreversibility and intrinsics revealing of series with complex network approach. Physica A 499, 241–249 (2018)MathSciNetGoogle Scholar
- 23.Jiang, S., Bian, C., Ning, X., Ma, Q.D.: Visibility graph analysis on heartbeat dynamics of meditation training. Appl. Phys. Lett. 102(25), 253702 (2013)Google Scholar
- 24.Hou, F., Li, F., Wang, J., Yan, F.: Visibility graph analysis of very short-term heart rate variability during sleep. Physica A 458, 140–145 (2016)Google Scholar
- 25.Zhu, G., Li, Y., Wen, P.P.: An efficient visibility graph similarity algorithm and its application on sleep stages classification. In: International Conference on Brain Informatics, pp. 185–195. Springer (2012)Google Scholar
- 26.Zhu, G., Li, Y., Wen, P.P.: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J. Biomed. Health Inform. 18(6), 1813–1821 (2014)Google Scholar
- 27.Ahmadlou, M., Adeli, H., Adeli, A.: New diagnostic EEG markers of the Alzheimers disease using visibility graph. J. Neural Transm. 117(9), 1099–1109 (2010)Google Scholar
- 28.Bhaduri, S., Ghosh, D.: Electroencephalographic data analysis with visibility graph technique for quantitative assessment of brain dysfunction. Clin. EEG Neurosci. 46(3), 218–223 (2015)Google Scholar
- 29.Gao, Z.K., Cai, Q., Yang, Y.X., Dong, N., Zhang, S.S.: Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEG. Int. J. Neural Syst. 27(04), 1750005 (2017)Google Scholar
- 30.Cai, L., Deng, B., Wei, X., Wang, R., Wang, J.: Analysis of spontaneous EEG activity in Alzheimer’s disease using weighted visibility graph. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3100–3103. IEEE (2018)Google Scholar
- 31.Zhu, G., Li, Y., Wen, P.P.: Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm. Comput. Methods Progr. Biomed. 115(2), 64–75 (2014)Google Scholar
- 32.Hobson, J.A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects: A. Rechtschaffen and A. kales (editors). (Public Health Service, US Government Printing Office, Washington, DC. Electroencephalogr. Clin. Neurophysiol. 26(6), 644 (1969)Google Scholar
- 33.Šušmáková, K.: Human sleep and sleep eeg. Meas. Sci. Rev. 4(2), 59–74 (2004)Google Scholar
- 34.Prerau, M.J., Brown, R.E., Bianchi, M.T., Ellenbogen, J.M., Purdon, P.L.: Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology 32(1), 60–92 (2017)Google Scholar
- 35.Prinz, P.N., Vitiello, M.V., Raskind, M.A., Thorpy, M.J.: Sleep disorders and aging. N. Engl. J. Med. 323(8), 520–526 (1990)Google Scholar
- 36.Vitiello, M.V.: Sleep disorders and aging: understanding the causes. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 52(4), M189–M191 (1997)Google Scholar
- 37.Rediehs, M.H., Reis, J.S., Creason, N.S.: Sleep in old age: focus on gender differences. Sleep 13(5), 410–424 (1990)Google Scholar
- 38.Redline, S., Kirchner, H.L., Quan, S.F., Gottlieb, D.J., Kapur, V., Newman, A.: The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch. Intern. Med. 164(4), 406–418 (2004)Google Scholar
- 39.Reyner, A., Horne, J.: Gender-and age-related differences in sleep determined by home-recorded sleep logs and actimetry from 400 adults. Sleep 18(2), 127–134 (1995)Google Scholar
- 40.Ehlers, C., Kupfer, D.: Slow-wave sleep: do young adult men and women age differently? J. Sleep Res. 6(3), 211–215 (1997)Google Scholar
- 41.Fukuda, N., Honma, H., Kohsaka, M., Kobayashi, R., Sakakibara, S., Kohsaka, S., Koyama, T.: Gender difference of slow wave sleep in middle aged and elderly subjects. Psychiatry Clin. Neurosci. 53(2), 151–153 (1999)Google Scholar
- 42.Cappuccio, F.P., Taggart, F.M., Kandala, N.B., Currie, A., Peile, E., Stranges, S., Miller, M.A.: Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31(5), 619–626 (2008)Google Scholar
- 43.Knutson, K.L., Van Cauter, E.: Associations between sleep loss and increased risk of obesity and diabetes. Ann. N. Y. Acad. Sci. 1129(1), 287–304 (2008)Google Scholar
- 44.Gevins, A.S., Rémond, A.: Methods of Analysis of Brain Electrical and Magnetic Signals, vol. 1. Elsevier, Amsterdam (1987)Google Scholar
- 45.Babloyantz, A., Salazar, J., Nicolis, C.: Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. A 111(3), 152–156 (1985)Google Scholar
- 46.Fell, J., Röschke, J., Mann, K., Schäffner, C.: Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures. Electroencephalogr. Clin. Neurophysiol. 98(5), 401–410 (1996)Google Scholar
- 47.Pereda, E., Gamundi, A., Rial, R., González, J.: Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages. Neurosci. Lett. 250(2), 91–94 (1998)Google Scholar
- 48.Ferri, R., Parrino, L., Smerieri, A., Terzano, M.G., Elia, M., Musumeci, S.A., Pettinato, S., Stam, C.J.: Non-linear EEG measures during sleep: effects of the different sleep stages and cyclic alternating pattern. Int. J. Psychophysiol. 43(3), 273–286 (2002)Google Scholar
- 49.Acharya, R., Faust, O., Kannathal, N., Chua, T., Laxminarayan, S.: Non-linear analysis of EEG signals at various sleep stages. Comput. Methods Progr. Biomed. 80(1), 37–45 (2005)Google Scholar
- 50.Shen, Y., Olbrich, E., Achermann, P., Meier, P.: Dimensional complexity and spectral properties of the human sleep EEG. Clin. Neurophysiol. 114(2), 199–209 (2003)Google Scholar
- 51.Lee, J.M., Kim, D.J., Kim, I.Y., Park, K.S., Kim, S.I.: Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis. Med. Eng. Phys. 26(9), 773–776 (2004)Google Scholar
- 52.Rényi, A., et al.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561 (1961)Google Scholar
- 53.Roldán, É., Parrondo, J.M.: Entropy production and Kullback–Leibler divergence between stationary trajectories of discrete systems. Phys. Rev. E 85(3), 031129 (2012)Google Scholar
- 54.Roldán, É., Parrondo, J.M.: Estimating dissipation from single stationary trajectories. Phys. Rev. Lett. 105(15), 150607 (2010)Google Scholar
- 55.Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A, vol. 454, pp. 903–995. The Royal Society (1998)Google Scholar
- 56.Cummings, D.A., Irizarry, R.A., Huang, N.E., Endy, T.P., Nisalak, A., Ungchusak, K., Burke, D.S.: Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427(6972), 344 (2004)Google Scholar
- 57.Wang, J., Shang, P., Xia, J., Shi, W.: Emd based re ned composite multiscale entropy analysis of complex signals. Physica A 421, 583–593 (2015)Google Scholar
- 58.Xiong, H., Shang, P., Bian, S.: Detecting intrinsic dynamics of traffic flow with recurrence analysis and empirical mode decomposition. Physica A 474, 70–84 (2017)Google Scholar
- 59.Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods. Wiley, New York (1999)zbMATHGoogle Scholar
- 60.Hochberg, Y., Tamhane, A.: Multiple Comparison Procedures. Wiley, New York (1987)zbMATHGoogle Scholar
- 61.Dean, D.A., Goldberger, A.L., Mueller, R., Kim, M., Rueschman, M., Mobley, D., Sahoo, S.S., Jayapandian, C.P., Cui, L., Morrical, M.G., et al.: Scaling up scientific discovery in sleep medicine: the national sleep research resource. Sleep 39(5), 1151–1164 (2016)Google Scholar
- 62.Quan, S.F., Howard, B.V., Iber, C., Kiley, J.P., Nieto, F.J., O’connor, G.T., Rapoport, D.M., Redline, S., Robbins, J., Samet, J.M., et al.: The sleep heart health study: design, rationale, and methods. Sleep 20(12), 1077–1085 (1997)Google Scholar
- 63.Sanders, M.H., Lind, B.K., Quan, S.F., Iber, C., Gottlieb, D.J., Bonekat, W.H., Rapoport, D.M., Smith, P.L., Kiley, J.P.: Methods for obtaining and analyzing unattended polysomnography data for a multicenter study. Sleep 21(7), 759–767 (1998)Google Scholar
- 64.Buckelmüller, J., Landolt, H.P., Stassen, H., Achermann, P.: Trait-like individual differences in the human sleep electroencephalogram. Neuroscience 138(1), 351–356 (2006)Google Scholar
- 65.Berry, R.B., Brooks, R., Gamaldo, C.E., Harding, S.M., Marcus, C., Vaughn, B.: The AASM manual for the scoring of sleep and associated events. Rules, Terminology and Technical Specifications, Darien, Illinois, American Academy of Sleep Medicine (2012)Google Scholar
- 66.World Health Organization. http://www.who.int/. Accessed 30 May 2018
- 67.Chatterjee, S., Hadi, A.S.: Influential observations, high leverage points, and outliers in linear regression. Stat. Sci. 1(3), 379–393 (1986)MathSciNetzbMATHGoogle Scholar
- 68.Chen, S., Billings, S.A., Luo, W.: Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50(5), 1873–1896 (1989)zbMATHGoogle Scholar
- 69.Billings, S.A., Chen, S., Korenberg, M.J.: Identification of MIMO non-linear systems using a forward-regression orthogonal estimator. Int. J. Control 49(6), 2157–2189 (1989)zbMATHGoogle Scholar
- 70.Loh, C.H., Duh, J.Y.: Analysis of nonlinear system using NARMA models. Doboku Gakkai Ronbunshu 537, 11–21 (1996)Google Scholar
- 71.Watanabe, R.N., Kohn, A.F.: System identification of a motor unit pool using a realistic neuromusculoskeletal model. In: 2014 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 610–615 (2014)Google Scholar
- 72.Kadir, S.N., Tahir, N.M., Yassin, I.M., Zabidi, A.: Malaysian tourism interest forecasting using nonlinear auto-regressive moving average (NARMA) model. In: 2014 IEEE Symposium on Wireless Technology and Applications, pp. 193–198 (2014)Google Scholar
- 73.Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110, 43–50 (1997)zbMATHGoogle Scholar