Advertisement

Some soliton-type analytical solutions and numerical simulation of nonlinear Schrödinger equation

  • Om Prakash Yadav
  • Ram JiwariEmail author
Original Paper
  • 58 Downloads

Abstract

In this article, we study some soliton-type analytical solutions of Schrödinger equation, with their numerical treatment by Galerkin finite element method. First of all, some analytical solutions to the equation are obtained for different values of parameters; thereafter, the problem of truncating infinite domain to finite interval is taken up and truncation approximations are worked out for finding out appropriate intervals so that information is not lost while reducing the domain. The benefit of domain truncation is that we do not need to introduce artificial boundary conditions to find out numerical approximations. To verify theoretical results, numerical simulations are performed by Galerkin finite element method. Crank–Nicolson method is used for the time discretization, and non-linearity is resolved using predictor corrector method, which is second order accurate and computationally efficient.

Keywords

Schrödinger equation Analytical solution Galerkin finite element method Crank–Nicolson method Predictor–corrector method 

Notes

Acknowledgements

Om Prakash Yadav is grateful to the University Grant Commission, India, for the financial support given during this work. We express our sincere thanks to anonymous reviewers for their valuable comments and suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest to this work. There is no professional or other personal interest of any nature or kind in any product that could be construed as influencing the position presented in the manuscript entitled.

References

  1. 1.
    Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926)CrossRefGoogle Scholar
  2. 2.
    Nohara, B.T.: Governing equations of envelopes created by nearly bichromatic waves on deep water. Nonlinear Dyn. 50(1–2), 49–60 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Argyris, J., Haase, M.: An engineer’s guide to soliton phenomena: application of the finite element method. Comput. Methods Appl. Mech. Eng. 61(1), 71–122 (1987)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhatia, R., Mittal, R.: “Numerical study of Schrödinger equation using differential quadrature method,” International Journal of Applied and Computational Mathematics, 4(1), pp. Art. 36, 21, (2018)Google Scholar
  5. 5.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)zbMATHGoogle Scholar
  6. 6.
    Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: The soliton: a new concept in applied science. In: Proceedings of the IEEE, vol. 61, pp. 1443–1483 (Oct 1973)Google Scholar
  7. 7.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Ž. Èksper. Teoret. Fiz. 61(1), 118–134 (1971)MathSciNetGoogle Scholar
  8. 8.
    Zakharov, V., Shabat, A.: Interaction between solitons in a stable medium. Sov. Phys. JETP 37(5), 823–828 (1973)Google Scholar
  9. 9.
    Ma, W.-X., Chen, M.: Direct search for exact solutions to the nonlinear Schrödinger equation. Appl. Math. Comput. 215(8), 2835–2842 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Neugebauer, G., Meinel, R.: General \(N\)-soliton solution of the AKNS class on arbitrary background. Phys. Lett. A 100(9), 467–470 (1984)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Meng, G.-Q., Gao, Y.-T., Yu, X., Shen, Y.-J., Qin, Y.: Multi-soliton solutions for the coupled nonlinear Schrödinger-type equations. Nonlinear Dyn. 70(1), 609–617 (2012)CrossRefGoogle Scholar
  12. 12.
    Guo, L.Z., Guo, Y.Z., Billings, S.A., Coca, D., Lang, Z.Q.: The use of Volterra series in the analysis of the nonlinear Schrödinger equation. Nonlinear Dyn. 73(3), 1587–1599 (2013)CrossRefGoogle Scholar
  13. 13.
    Delfour, M., Fortin, M., Payr, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71(1), 16–30 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dehghan, M., Taleei, A.: A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput. Phys. Commun. 181(1), 43–51 (2010)CrossRefGoogle Scholar
  16. 16.
    Wang, B., Liang, D.: The finite difference scheme for nonlinear Schrödinger equations on unbounded domain by artificial boundary conditions. Appl. Numer. Math. 128, 183–204 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lu, W., Huang, Y., Liu, H.: Mass preserving discontinuous Galerkin methods for Schrödinger equations. J. Comput. Phys. 282, 210–226 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hong, J., Ji, L., Liu, Z.: Optimal error estimate of conservative local discontinuous Galerkin method for nonlinear Schrödinger equation. Appl. Numer. Math. 127, 164–178 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ávila, A., Meister, A., Steigemann, M.: An adaptive Galerkin method for the time-dependent complex Schrödinger equation. Appl. Numer. Math. 121, 149–169 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang, L., Liew, K.: An element-free based solution for nonlinear Schrödinger equations using the ICVMLS-Ritz method. Appl. Math. Comput. 249, 333–345 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ledoux, V., Van Daele, M.: The accurate numerical solution of the Schrödinger equation with an explicitly time-dependent Hamiltonian. Comput. Phys. Commun. 185(6), 1589–1594 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gardner, L., Gardner, G., Zaki, S., El Sahrawi, Z.: B-spline finite element studies of the non-linear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 108(3–4), 303–318 (1993)CrossRefGoogle Scholar
  23. 23.
    Bashan, A., Yagmurlu, N.M., Ucar, Y., Esen, A.: An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B-spline differential quadrature method. Chaos Solitons Fractals 100, 45–56 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dag, I.: A quadratic B-spline finite element method for solving nonlinear Schrodinger equation. Computer Methods Appl. Mech. Eng. 174(1–2), 247–258 (1999)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Robinson, M.P., Fairweather, G.: Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68(3), 355–376 (1994)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Robinson, M.: The solution of nonlinear Schrödinger equations using orthogonal spline collocation. Comput. Math. Appl. 33(7), 39–57 (1997)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Korkmaz, A., Dağ, İ.: A differential quadrature algorithm for nonlinear Schrödinger equation. Nonlinear Dyn. 56(1–2), 69–83 (2009)CrossRefGoogle Scholar
  28. 28.
    Borhanifar, A., Abazari, R.: Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method. Optics Commun. 283(10), 2026–2031 (2010)CrossRefGoogle Scholar
  29. 29.
    Ismail, M.: Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method. Math. Comput. Simul. 78(4), 532–547 (2008)CrossRefGoogle Scholar
  30. 30.
    Karakashian, O., Akrivis, G.D., Dougalis, V.A.: On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30(2), 377–400 (1993)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Quarteroni, A.: Numerical models for differential problems, vol. 8 of MS&A. Modeling, Simulation and Applications. Springer, Milan, second ed., (2014). Translated from the fifth (2012) Italian edition by Silvia QuarteroniGoogle Scholar
  32. 32.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence, RI (2010)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations