Contrast of optical activity and rogue wave propagation in chiral materials

  • D. D. Estelle TemgouaEmail author
  • M. B. Tchoula Tchokonte
  • M. Maaza
  • T. C. Kofane


We report the contrast of optical activity and properties of nonparaxial optical rogue waves for the higher-order nonparaxial chiral nonlinear Schrödinger (NLS) equation. The latter describes the propagation of ultrashort optical pulses in chiral optical fibers. Both first- and second-order rogue wave solutions are investigated analytically by the modified Darboux transformation (MDT) and numerically by one pseudo-spectral method. The interplay of chiral materials on rogue wave propagation is elucidated, and the results can be applied on optical communication and in others physical systems.


Rogue wave propagation Chirality and optical activity Chiral materials Chiral optical fibers 



D. D. Estelle Temgoua is grateful to University of the Western Cape and I-Themba LABS, the National Research Foundation (NRF) of South Africa (SA) for research facilities and computer services. M. B. Tchoula Tchokonte thanks the SA - NRF (81296; UID 111174). M. Maaza is the Chair of I-Themba LABS-National Research Foundation of South Africa and the UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology. T. C. Kofane is a member of Centre d’Excellence Africain en Technologies de l’Information et de la Communication (CETIC).


The author D. D. Estelle Temgoua gratefully acknowledges the support of the Organization for Women in Science for the Developing World (OWSD) and Swedish International Development Cooperation Agency (Sida) under the Grant No. 3240287309.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.


  1. 1.
    Degasperis, A., Lombardo, S.: Multicomponent integrable wave equations: I. Darboux-dressing transformation. J. Phys. A Math. Theor. 40(5), 961–977 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barron, L.D.: Molecular Light Scattering and Optical Activity. Cambridge University Press, Cambridge (1982)Google Scholar
  3. 3.
    Egidi, F., Carnimeo, I., Cappeli, C.: The optical rotatory dispersion of methyloxirane in aqueous solution: assessing the performance of density functional theory in combination with a fully polarization QM/MM/PCM approach. Opt. Mater. Express 5(1), 196–201 (2005)CrossRefGoogle Scholar
  4. 4.
    Singham, S.B.: Form and intrinsic optical activity in light scattering by chiral particles. J. Chem. Phys. 87(3), 1873–1881 (1987)CrossRefGoogle Scholar
  5. 5.
    Verbiest, T., Koeckelberghs, G., Champagne, B.: Feature issue introduction: chirality in optics. Opt. Mater. Express 4(12), 264–265 (2014)CrossRefGoogle Scholar
  6. 6.
    lapine, M., Shadrivov, I., Powell, D., Kivshar, Y.: Metamaterials with conformational nonlinearity, Scientific Reports, vol. 138, pp. 1–4 (2011)Google Scholar
  7. 7.
    Veretenov, N.A., Fedorov, S.V., Rosanov, N.N.: Topological vortex and knotted dissipative optical 3D solitons generated by 2D vortex solitons. PRL 119(26), 263901 (2017)CrossRefGoogle Scholar
  8. 8.
    Co, R.T., Harigaya, K., Nomura, Y.: Chiral dark sector. PRL 118(10), 101801 (2017)CrossRefGoogle Scholar
  9. 9.
    Verbiest, T., clays, K., Rodriguez, V.: Nonlinear Optical Charaterization Techniques: An Introduction. CRC press, Boca Raton (2009)CrossRefGoogle Scholar
  10. 10.
    Buyere, A., Benichou, E., Guy, L., Bensalah-Ledoux, A., Guy, S., Brevet, P.-F.: Reversibility of the supramolecular chirality of bridged binaphtol derivatives at the air-water interface. Opt. Mater. Express 4(12), 2516 (2014)CrossRefGoogle Scholar
  11. 11.
    Huttunen, M.J., Partanen, M., Bautista, G., Chu, S.-W., Kauranen, M.: Nonlinear optical activity effects in complex anisotropic three-dimension media. Opt. Mater. Express 5(1), 11–21 (2015)CrossRefGoogle Scholar
  12. 12.
    Valev, V.K., Baumberg, J.J., Sibila, C., Verbiest, T.: Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25(18), 2517–2534 (2013)CrossRefGoogle Scholar
  13. 13.
    Potravkin, N., Cherpetskaya, E., Perezhogin, I., Makarov, V.: Ultrashort elliptical polarized laser pulse interaction with helical photonic metamaterial. Opt. Mater. Express 4(10), 2090–2101 (2014)CrossRefGoogle Scholar
  14. 14.
    Chadha, A., Zhao, D., Zhou, W.: Comparative study of metallic and dielectric helix photonic metamaterial. Opt. Mater. Express 4(12), 2460–2467 (2014)CrossRefGoogle Scholar
  15. 15.
    Lee, K., Wu, J., Kim, K.: Defect modes in one-dimensional photonic crystal with a chiral defect layer. Opt. Mater. Express 4(12), 2542–2550 (2014)CrossRefGoogle Scholar
  16. 16.
    Verbiest, T., Kauranen, M., Persoons, A., Ikonen, M., Kurkela, J., Lemmetyinen, H.: Nonlinear optical activity and biomolecular chirality. J. Am. Chem. Soc. 116(20), 9203–9205 (1994)CrossRefGoogle Scholar
  17. 17.
    Bai, B., Svivko, Y., Turunen, J., Vallius, T.: Optical activity in planar chiral metamaterials: Theoretical study. Phys. Rev. A 76(2), 023811–12 (2007)CrossRefGoogle Scholar
  18. 18.
    Bai, B., Laukkanen, J., Lehmuskero, A., Turunen, J.: Simultaneously enhanced transmission and artificial optical activity in gold film perforated with chiral hole array. Phys. Rev. B 81(11), 115424 (2010)CrossRefGoogle Scholar
  19. 19.
    Poladian, L., Straton, M., Docherty, A., Argyros, A.: Pure chiral optical fibres. Opt. Express 19(2), 968–80 (2011)CrossRefGoogle Scholar
  20. 20.
    Dai, L., Zhu, K.-D., Shen, W., Huang, X., Zhang, L., Goriely, A.: Controllable rotational inversion in nanostructures with dual chirality. Nanoscale 10(14), 6343–6348 (2018)CrossRefGoogle Scholar
  21. 21.
    Akhmediev, N., et al.: Roadmap on optical rogue waves and extreme events. J. opt. 18, 063001 (2016)CrossRefGoogle Scholar
  22. 22.
    Solli, D.R., Ropers, C., Koonanth, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–7 (2007)CrossRefGoogle Scholar
  23. 23.
    Lecaplain, C., Grelu, Ph, Soto-Crespo, J.M., Akhmediev, N.: Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108(23), 233901–5 (2012)CrossRefGoogle Scholar
  24. 24.
    Birkholz, S., Nibbering, E.T.J., Bree, C., Skupin, S., Demircan, A., Genty, G., Steinmeyer, G.: Spatiotemporal rogue events in optical multiple filamentation. Phys. Rev. Lett. 111(24), 243903–5 (2013)CrossRefGoogle Scholar
  25. 25.
    Peregrine, D.H.: Water waves, nonlinear schrödinger equation and their solutions. J. Aust. Math. Soc. Ser. B Appl. Math. 25, 16–43 (1983)CrossRefGoogle Scholar
  26. 26.
    Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, b, Akhmediev, N., Dias, F., Dudly, J.M.: Observation of Kunetsov-Ma soliton dynamics in optical fiber. Sci. Rep. 2(463), 1–5 (2012)Google Scholar
  27. 27.
    Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear schrödinger equation. Theor. Math. Phys. 69(2), 1089–93 (1986)CrossRefGoogle Scholar
  28. 28.
    Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, Ph, Mihalache, D.: Versatile rogue waves in scalar, vector and multidimensional nonlinear systems. J. Phys. A Math. Theor. 50(463001), 1–78 (2017)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Onorato, M., Proment, D., Clauss, G., Klein, M.: Rogue waves: From nonlinear Schrödinger breather solutions to seer-keeping test. PLoS One 8(2), e54629 (2013)CrossRefGoogle Scholar
  30. 30.
    Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic, San Diego (2007)zbMATHGoogle Scholar
  31. 31.
    Walczak, P., Randoux, S., Suret, P.: Optical rogue waves in integrable turbulence. Phys. Rev. Lett. 114(14), 143903–5 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Baronio, F., Conforti, M., Degasperis, A., Wabnitz, S.: Three-wave trapponinc solitons for tunable high-repetition rate pulse train generation. IEEE J. Quantum Electron 44, 542–6 (2008)CrossRefGoogle Scholar
  33. 33.
    Liu, W., Pang, L., Yan, H., Lei, M.: Optical soliton shaping in dispersion decreasing fibers. Nonlinear Dyn. 84, 2205–2209 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Suret, P., Koussafi, R.E., Tikan, A., evain, C., randoux, s, szwaj, c, bielawski, s: Single-short observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 13136(7), 1–8 (2016)Google Scholar
  35. 35.
    Pitaevkii, L., Stringari, S.: Bose–Einstein Condensation. Oxford niversity Press, Oxford (2003)zbMATHGoogle Scholar
  36. 36.
    Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose-Einstein condensation: twenty years after. Rom. Rep. Phys. 67(1), 5–50 (2015)Google Scholar
  37. 37.
    Malkin, V.M., shvets, G., Fisch, N.J.: Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett. 82(22), 4448–51 (1999)CrossRefGoogle Scholar
  38. 38.
    Wen, L., Li, L., Li, Z.D., Song, S.W., Zhong, X.F., Lui, W.M.: Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction. Eur. Phys. J. D 64, 473 (2011)CrossRefGoogle Scholar
  39. 39.
    Kodama, Y., HAsegawa, A.: Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron QE–23(5), 510–524 (1987)CrossRefGoogle Scholar
  40. 40.
    Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–9 (1973)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Chen, S., Song, L.-Y.: Peregrine solitons and algebraic soliton pairs in Kerr media considering space-time correction. Phys. Lett. A 378, 1228–1232 (2014)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Chowdury, A., Krolikowski, W.: Breather solitons of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits. Phys. Rev. E 96(4), 042209–13 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ankiewicz, A., Akhmediev, N.: Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy. Phys. Rev. E 96(1), 012219–8 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wen, X.-Y., Yan, Zh, Malomed, B.A.: Higher-order vector dicrete rogue-wave states in the coupled Ablowitz-Ladik equations: exactsolutions and stability. Chaos 26, 123110–1 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Miller, P.D., Akhmediev, N.N.: Transfer matrices for multiport devices made from solitons. Phys. Rev. E 53(4), 4098–4108 (1996)CrossRefGoogle Scholar
  46. 46.
    Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)CrossRefGoogle Scholar
  47. 47.
    Degasperis, A., Lombardo, S.: Multicomponent integrable wave equations: I. Darboux-dressing transformation. J. Phys. A Math. Theor. 40, 961–977 (2007)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Degasperis, A., Lombardo, S.: Multicomponent integrable wave equations: II. Soliton solutions. J. Phys. A Math. Theor. 42, 385206–22 (2009)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Mukam, S.P.T., Souleymanou, A., Kuetche, V.K., Bouetou, T.B.: Generalized Darboux transformation and parameter-dependent rogue wave solutions to a nonlinear shrodinger system. Nonlinear Dyn. 93(2), 373–383 (2018)CrossRefGoogle Scholar
  50. 50.
    Chamorro-Posada, P., McDonald, G.S., New, G.H.C.: Nonparaxial beam propagation methods. Opt. Commun. 192, 1–12 (2001)CrossRefGoogle Scholar
  51. 51.
    Temgoua, D.D.E., Tchoula, T.M.B., Kofane, T.C.: Combined effects of nonparaxiality, optical activity and walk-off on rogue wave propagation in optical fibers filled with chiral materials. Phys. Rev. E 97(4), 042205–18 (2018)CrossRefGoogle Scholar
  52. 52.
    Yan, Z., Dai, C.: Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients. J. Opt. 15, 064012 (2013)CrossRefGoogle Scholar
  53. 53.
    Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81(4), 046602–8 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of the Western CapeBellvilleSouth Africa
  2. 2.Organization for Women in Science for the Developing WorldICTP CampusTriesteItaly
  3. 3.I-Themba LABSNational Research FoundationSomerset WestSouth Africa
  4. 4.University of Yaounde IYaoundeCameroon
  5. 5.Centre d’Excellence Africain en Technologies de l’Information et de la CommunicationUniversity of Yaounde IYaoundeCameroon

Personalised recommendations