Advertisement

Nonlinear Dynamics

, Volume 95, Issue 3, pp 2591–2603 | Cite as

An alternative approach for MLE calculation in nonlinear continuous dynamic systems

  • Shaobu WangEmail author
  • Zhenyu Huang
Original Paper
  • 107 Downloads

Abstract

As an important metric to tell whether a nonlinear dynamic system has a singular attractor or divergent trajectory, the maximal Lyapunov exponent (MLE) can be calculated from either system models or time series of state variable measurement. However, in the real world, due to inaccurate models, measurement noise, and the fact that sometimes state variables cannot be measured directly, it is very difficult to get an accurate MLE, which limits its application in, for example, in prediction of a nonlinear physical system (e. g. power systems) behavior. To overcome these factors, this paper proposed a trajectory estimation-based MLE calculation approach. The proposed approach addressed how to calculate the MLE when state variables cannot be accessed directly, and uncertainties in system models, as well as noise in measurements. The simulation results show that the proposed approach is able to handle well the nonlinear measurement functions between state variables and measurements, and get better results than pure model-based approaches or measurement-based approaches in front of measurement noise and model uncertainties.

Keywords

Maximal Lyapunov exponents Nonlinear differential dynamic systems Inaccurate model Measurement with noise Nonlinear measurement functions 

References

  1. 1.
    Udwadia, F.E., Bremen, H.F.: An efficient and stable approach for computation of Lyapunov characteristic exponents of continuous dynamical systems. Appl. Math. Comput. 121(2–3), 219–259 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Efimov, V., Prusov, A., Shokurov, M.: Seasonal instability of pacific sea surface temperature anomalies. Q. J. R. Meteorol. Soc. Suppl. B 123(538), 337–356 (1997)CrossRefGoogle Scholar
  3. 3.
    Schmid, G., Dunkin, R.: Indications of nonlinearity intraindividual specificity and stability of human EEG—the unfolding dimension. Physica D 93(3–4), 165–1900 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Froeschle, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators—application to asteroidal motion. Celest. Mech. Dyn. Astron. 1(67), 41–62 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Nicolis, G., Daems, D.: Nonequilibrium thermodynamics of dynamical systems. J. Phys. Chem. 100(49), 19187–19191 (1996)CrossRefGoogle Scholar
  6. 6.
    Ramasubramanian, K., Sriram, M.S.: A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139(1–2), 72–86 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D Nonlinear Phenom. 16(3), 285–317 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Rosenstein, M.T., Collins, J.J., De Luca, J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D Nonlinear Phenom. 65(1–2), 117–134 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sato, S., Sano, M., Sawada, Y.: Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Prog. Theor. Phys. 77(1), 1–5 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. In: Hunt, B.R., Kennedy, J.A., Li, T.Y., Nusse, H.E. (eds.) The Theory of Chaotic Attractors. Springer, New York (2004)Google Scholar
  11. 11.
    Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59(8), 845 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sano, M., Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55(10), 1082 (1985)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Udwadia, F.E., von Bremen, H.F.: Computation of Lyapunov characteristic exponents for continuous dynamical systems. J. Appl. Math. Phys. 53(1), 123–146 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Huang, Z., Zhou, N., Diao, R., Wang, S., Elbert, S., Meng, D., Lu, S.: Capturing real-time power system dynamics: opportunities and challenges. In: Proceedings of IEEE Power and Energy Society General Meeting, Denver, CO. USA, 26–30 July (2015)Google Scholar
  15. 15.
    Farantatos, E., Stefopoulos, G.K., Cokkinides, G.J., Meliopoulos, A.P.: PMU-based dynamic state estimation electric power systems. In: Proceedings of IEEE Power and Energy Society General Meeting, Calgary, AB, Canada, 26–30 July (2009)Google Scholar
  16. 16.
    Ghahremani, E., Kamwa, I.: Online state estimation of a synchronous generator using unscented Kalman filter from phasor measurements units. IEEE Trans. Energy Convers. 26(4), 1099–1108 (2011)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Huang, Z., Zhou, N., Lee, B., Diao, R., Du, P.: Application of ensemble Kalman filter in power system state tracking and sensitivity analysis. In: Proceedings of IEEE PES Transmission and Distribution Conference and Exposition, Orlando, FL, USA, 7–10 May (2012)Google Scholar
  18. 18.
    Wang, S., Gao, W., Sakis Meliopoulos, A.P.: An alternative method for power system dynamic state estimation based on unscented transform. IEEE Trans. Power Syst. 27(2), 942–950 (2012)CrossRefGoogle Scholar
  19. 19.
    Huang, Z., Du, P., Kosterev, D., Yang, S.: Generator dynamic model validation and parameter calibration using phasor measurements at the point of connection. IEEE Trans. Power Syst. 28(2), 1939–1949 (2013)CrossRefGoogle Scholar
  20. 20.
    Fan, L., Wehbe, Y.: Extended Kalman filtering based real-time dynamic state and parameter estimation using PMU data. Electr. Power Syst. Res. 103, 168–177 (2013)CrossRefGoogle Scholar
  21. 21.
    Zhou, N., Meng, D., Huang, Z., Welch, G.: Dynamic state estimation of a synchronous machine using PMU data: a comparative study. IEEE Trans. Smart Grid 6(1), 450–460 (2015)CrossRefGoogle Scholar
  22. 22.
    Mandel, J.: A brief tutorial on the ensemble Kalman filter. Center for Computational Mathematics, University of Colorado at Denver (2007). http://www-math.ucdenver.edu/ccm/reports/rep242.pdf

Copyright information

© US Government 2019

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations