Advertisement

Analysis of the nonlinear dynamics of inter-cycle combustion variations in an ethanol fumigation-diesel dual-fuel engine

  • Li-Ping YangEmail author
  • Timothy A. Bodisco
  • Ali Zare
  • Norbert Marwan
  • Thuy Chu-Van
  • Richard J. Brown
Original Paper
  • 56 Downloads

Abstract

The nonlinear dynamics of a combustion system in a modern common-rail dual-fuel engine has been studied. Using nonlinear dynamic data analysis (phase space reconstruction, recurrence plots, recurrence qualification analysis and wavelet analysis), the effect of ethanol fumigation on the dynamic behaviour of a combustion system has been examined at an engine speed of 2000 rpm with engine load rates of 50%, 75% and 100% and ethanol substitutions up to 40% (by energy) in 10% increments for each engine load. The results show that the introduction of ethanol has a significant effect on inter-cycle combustion variation (ICV) and the dynamics of the combustion system for all of the studied engine loads. For pure diesel mode and lower ethanol substitutions, the ICV mainly exhibits multiscale dynamics: strongly periodic and/or intermittent fluctuations. As the ethanol substitution is increased, the combustion process gradually transfers to more persistent low-frequency variations. At different engine loads, we can observe the bands with the strongest spectral power density that persist over the entire 4000 engine cycles. Compared to high engine loads (75% and 100%), the dynamics of the combustion system at a medium engine load (50%) was more sensitive to the introduction of ethanol. At higher ethanol substitutions, the increased ICV and the complexity of the combustion system at the medium load are attributable to the enhanced cooling caused by the excessive ethanol evaporation, while the low-frequency large-scale combustion fluctuations for the higher engine loads are likely caused by cyclic excitation oscillation during the transition of the combustion mode.

Keywords

Nonlinear dynamics Combustion Recurrence plots (RPs) Recurrence quantification analysis (RQA) Wavelet analysis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51306041), Natural Science Foundation of Heilongjiang Province of China (QC2013C057) and the Fundamental Research Funds for the Central Universities (GK2030260164).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tutak, W.: Bioethanol E85 as a fuel for dual-fuel diesel engine. Energy Convers. Manag. 86, 39–48 (2014).  https://doi.org/10.1016/j.enconman.2014.05.016 CrossRefGoogle Scholar
  2. 2.
    Wheals, A.E., Basso, L.C., Alves, D.M.G., Amorim, H.V.: Fuel ethanol after 25 years. Tibtech 17, 482–7 (1999).  https://doi.org/10.1016/S0167-7799(99)01384-0 CrossRefGoogle Scholar
  3. 3.
    Imran, A., Varman, M., Masjuki, H.H., Kalam, M.A.: Review on alcohol fumigation on diesel engine: available alternative dual-fuel technology for satisfactory engine performance and reduction of environment concerning emission. Renew Sustain. Energy Rev. 26, 739–751 (2013).  https://doi.org/10.1016/j.rser.2013.05.070 CrossRefGoogle Scholar
  4. 4.
    Kumar, K., Sung, C.J.: A comparative experimental study of the autoignition characteristics of alternative and conventional jet fuel/oxidizer mixtures. Fuel 89, 2853–63 (2010).  https://doi.org/10.1016/j.fuel.2010.05.021 CrossRefGoogle Scholar
  5. 5.
    Fraioli, V., Mancaruso, E., Migliaccio, M., Vaglieco, B.M.: Ethanol effect as premixed fuel in dual-fuel CI engines: experimental and numerical investigations. Appl. Energy 119, 394–404 (2014).  https://doi.org/10.1016/j.apenergy.2014.01.008 CrossRefGoogle Scholar
  6. 6.
    Tsang, K.S., Zhang, Z.H., Cheung, C.S., Chan, T.L.: Reducing emissions of a diesel engine using fumigation ethanol and a diesel oxidation catalyst. Energy Fuels 24, 6156–65 (2010).  https://doi.org/10.1021/ef100899z CrossRefGoogle Scholar
  7. 7.
    Rodríguez-Fernández, J., Tsolakis, A., Theinnoi, K., Snowball, J., Sawtell, A., York, A.P.E.: Engine performance and emissions from dual-fuelled engine with in-cylinder injected diesel fuels and in-port injected bioethanol. SAE paper, no. 2009-01-1853 (2009). https://doi.org/10.4271/2009-01-1853
  8. 8.
    Pedrozo, V.B., May, I., Nora, M.D., Cairns, A., Zhao, H.: Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: an optimisation at low load. Appl. Energy 165, 6–182 (2016).  https://doi.org/10.1016/j.apenergy.2015.12.052 CrossRefGoogle Scholar
  9. 9.
    Mancaruso, E., Vaglieco, B.M.: Spectroscopic analysis of the phases of premixed combustion in a compression ignition engine fuelled with diesel and ethanol. Appl. Energy 143, 164–175 (2015).  https://doi.org/10.1016/j.apenergy.2015.01.031 CrossRefGoogle Scholar
  10. 10.
    Ekholm, K., Karlsson, M., Tunestål, P., Johansson, R., Johansson, B., Strandh, P.: Ethanol-diesel fumigation in a multi-cylinder engine. SAE paper, no. 2008-01-0033 (2008). https://doi.org/10.4271/2008-01-0033
  11. 11.
    Padala, S., Woo, C.H., Kook, S.H., Hawkes, E.R.: Ethanol utilisation in a diesel engine using dual-fuelling technology. Fuel 109, 597–607 (2013).  https://doi.org/10.1016/j.fuel.2013.03.049 CrossRefGoogle Scholar
  12. 12.
    Abu-Qudais, M., Haddad, O., Qudaisat, M.: The effect of alcohol fumigation on diesel engine performance and emissions. Energy Convers. Manag. 41, 389–399 (2000).  https://doi.org/10.1016/S0196-8904(99)00099-0 CrossRefGoogle Scholar
  13. 13.
    Chen, J., Gussert, D., Gao, X., Gupta, C., Foster, D.: Ethanol fumigation of a turbocharged diesel engine. SAE paper, no. 810680 (1981). https://doi.org/10.4271/810680
  14. 14.
    Hayes, T.K., Savage, L.D., White, R.A., Sorenson, S.C.: The effect of fumigation of different ethanol proofs on a turbocharged diesel engine. SAE paper no. 880497 (1988). https://doi.org/10.4271/880497
  15. 15.
    Ajav, E.A.S., Bachchan, B.T.K.: Thermal balance of a single cylinder diesel engine operating on alternative fuels. Energy Convers. Manag. 41, 1533–1541 (2000).  https://doi.org/10.1016/S0196-8904(99)00175-2 CrossRefGoogle Scholar
  16. 16.
    Udayakumar, R., Sundaram, S., Sivakumar, K.: Engine performance and exhaust characteristics of dual-fuel operation in DI diesel engine with methanol. SAE paper no. 2004-01-0096 (2004). https://doi.org/10.4271/2004-01-0096
  17. 17.
    Asad, U., Kumar, R., Zheng, M., Tjong, J.: Ethanol-fueled low temperature combustion: a pathway to clean and efficient diesel engine cycles. Appl. Energy 157, 838–850 (2015).  https://doi.org/10.1016/j.apenergy.2015.01.057 CrossRefGoogle Scholar
  18. 18.
    Zhang, Z.H., Tsang, K.S., Cheung, C.S., Chan, T.L., Yao, C.D.: Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine. Atmos. Environ. 45, 2001–2008 (2011).  https://doi.org/10.1016/j.atmosenv.2010.12.019 CrossRefGoogle Scholar
  19. 19.
    Popa, M., Negurescu, N., Pana, C., Racovitza, A.: Results obtained by methanol fuelling diesel engine. SAE paper no. 2001-01-3748 (2001). https://doi.org/10.4271/2001-01-3748
  20. 20.
    Heisey, J.B., Lestz, S.S.: Aqueous alcohol fumigation of a single-cylinder DI diesel engine. SAE paper no. 811208 (1981). https://doi.org/10.4271/811208
  21. 21.
    Di Blasio, G., Beatrice, C., Molina, S.: Effect of port injected ethanol on combustion characteristics in a dual-fuel light duty diesel engine. SAE paper no. 2013-01-1692 (2013). https://doi.org/10.4271/2013-01-1692
  22. 22.
    Bodisco, T., Low Choy, S., Brown, R.J.: A Bayesian approach to the determination of ignition delay. Appl. Therm. Eng. 60, 79–87 (2013).  https://doi.org/10.1016/j.applthermaleng.2013.06.048 CrossRefGoogle Scholar
  23. 23.
    Bodisco, T., Tröndle, P., Brown, R.J.: Inter-cycle variability of ignition delay in an ethanol fumigated common-rail diesel engine. Energy 84, 186–195 (2015).  https://doi.org/10.1016/j.energy.2015.02.107 CrossRefGoogle Scholar
  24. 24.
    Bodisco, T., Brown, R.J.: Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common-rail diesel engine. Energy 52, 55–65 (2013).  https://doi.org/10.1016/j.energy.2012.12.032 CrossRefGoogle Scholar
  25. 25.
    Barton, R.K., Kenemuth, D.K., Lestz, S.S., Meyer, W.E.: Cycle-by-cycle variations of a spark ignition engine: a statistical analysis. SAE paper no. 700488 (1970). https://doi.org/10.4271/700488
  26. 26.
    Ozdor, N., Dulger, M., Sher, E.: Cyclic variability in spark-ignition engines: a literature survey. SAE paper no. 940987 (1994). https://doi.org/10.4271/940987
  27. 27.
    Finney, C.E.A., Kaul, B.C., Daw, C.S., Wagner, R.M., Edwards, K.D., Green, J.B.: A review of deterministic effects in cyclic variability of internal combustion engines. In. J. Engine Res. 16(3), 366–378 (2015).  https://doi.org/10.1177/1468087415572033 CrossRefGoogle Scholar
  28. 28.
    Barton, R.K., Kenemuth, D.K., Lestz, S.S., Meyer, W.E.: Cycle-by-cycle variations of a spark ignition engine: a statistical analysis. SAE paper no. 700488 (1970)Google Scholar
  29. 29.
    Belmont, M.R., Hancock, M., Buckingham, D.J.: Statistical aspects of cyclic variability. SAE paper no. 860324 (1986)Google Scholar
  30. 30.
    Martin, J.K., Plee, S.L., Remboski Jr., D.J.: Burn modes and prior-cycle effects on cyclic variations in lean burn spark-ignition engine combustion. SAE paper no. 880201 (1988). https://doi.org/10.4271/880201
  31. 31.
    Moriyoshi, Y., Kanimoto, T., Yagita, M.: Prediction of cycle-to-cycle variation of in-cylinder flow in a motored engine. SAE paper no. 930066 (1993). https://doi.org/10.4271/930066
  32. 32.
    Daw, C.S., Finney, C.E.A., Green, J.B., et al.: A simple model for cyclic variations in a spark-ignition engine. SAE paper, no. 962086 (1996). https://doi.org/10.4271/962086
  33. 33.
    Daily, J.W.: Cycle-to-cycle variations: a chaotic process? Combust. Sci. Technol. 57, 149–62 (1988).  https://doi.org/10.1080/00102208808923950 CrossRefGoogle Scholar
  34. 34.
    Gotoda, H., Okuno, Y., Hayashi, K., Tachibana, S.: Characterization of degeneration process in combustion instability based on dynamical systems theory. Phys. Rev. E 92, 052906 (2015).  https://doi.org/10.1103/PhysRevE.92.052906 CrossRefGoogle Scholar
  35. 35.
    Godavarthi, V., Pawar, S.A., Unni, V.R., Sujith, R.I., Marwan, N., Kurths, J.: Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor. Chaos 28, 113111 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Bassily, H., Daqaq, M.F., Wagner, J.: Application of the pseudo-poincare maps to assess gas turbine system health. ASME J. Gas Turbines Power 134, 051601-1–8 (2012)CrossRefGoogle Scholar
  37. 37.
    Wendeker, M., Litak, G., Czarnigowski, J., Szabelski, K.: Nonperiodic oscillations in a spark ignition engine. Int. J. Bifurc. Chaos 14, 1801–6 (2004).  https://doi.org/10.1142/S0218127404010084 CrossRefzbMATHGoogle Scholar
  38. 38.
    Litak, G., Kamin’ski, T., Rusinek, R., et al.: Patterns in the combustion process in a spark ignition engine. Chaos Solitons Fractals 35, 578–585 (2008).  https://doi.org/10.1016/j.chaos.2006.05.053 CrossRefGoogle Scholar
  39. 39.
    Litak, G., Kami’nski, T., Czarnigowski, J., Zukowski, D., Wendeker, M.: Cycle-to-cycle oscillations of heat release in a spark ignition engine. Meccanica 42, 423–433 (2007).  https://doi.org/10.1007/s11012-007-9066-6 CrossRefzbMATHGoogle Scholar
  40. 40.
    Daw, C.S., Wagner, R.M., Edwards, K.D., Green, J.B.: Understanding the transition between conventional spark-ignited combustion and HCCI in a gasoline engine. Proc. Combust. Inst. 31, 2887–2894 (2007).  https://doi.org/10.1016/j.proci.2006.07.133 CrossRefGoogle Scholar
  41. 41.
    Yang, L.P., Song, E.Z., Ding, S.L., Brown, R.J., Marwan, N., Ma, X.Z.: Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine. Appl. Energy 183, 746–759 (2016).  https://doi.org/10.1016/j.apenergy.2016.09.037 CrossRefGoogle Scholar
  42. 42.
    Sen, A.K., Wang, J.H., Huang, Z.H.: Investigating the effect of hydrogen addition on cyclic variability in a natural gas spark ignition engine: wavelet multiresolution analysis. Appl. Energy 88, 4860–6 (2011).  https://doi.org/10.1016/j.apenergy.2011.06.030 CrossRefGoogle Scholar
  43. 43.
    Sen, A.K., Zheng, J.J., Huang, Z.H.: Dynamics of cycle-to-cycle variations in natural gas direct-injection spark-ignition. Appl. Energy 88, 2324–34 (2011).  https://doi.org/10.1016/j.apenergy.2011.01.009 CrossRefGoogle Scholar
  44. 44.
    Sen, A.K., Ash, S.K., Huang, B., Huang, Z.: Effect of exhaust gas recirculation on the cycle-to-cycle ariations in a natural gas spark ignition engine. Appl. Therm. Eng. 31, 2247–2253 (2011).  https://doi.org/10.1016/j.applthermaleng.2011.03.018 CrossRefGoogle Scholar
  45. 45.
    Li, G.X., Yao, B.F.: Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine. Appl. Therm. Eng. 28, 611–620 (2008).  https://doi.org/10.1016/j.applthermaleng.2007.04.008 CrossRefGoogle Scholar
  46. 46.
    Letellier, C., Meunier-Guttin-Cluzel, S., Gouesbet, G., Neveu, F., Duverger, T., Cousyn, B.: Use of the nonlinear dynamical system theory to study cycle-to-cycle variations from spark-ignition engine pressure data. SAE paper no. 971640 (1997). https://doi.org/10.4271/971640
  47. 47.
    Sen, A.K., Litak, G., Yao, B.-F., Li, G.-X.: Analysis of pressure fluctuations in a natural gas engine under lean burn conditions. Appl. Therm. Eng. 30, 776–779 (2010).  https://doi.org/10.1016/j.applthermaleng.2009.11.002 CrossRefGoogle Scholar
  48. 48.
    Rocha-Martinez, J.A., Navarrete-Gonzales, T.D., Pavia-Miller, C.G., Paez-hernandez, R.: Otto and diesel engine models with cyclic variability. Revista Mexicana de Fisica 48, 228–234 (2002)Google Scholar
  49. 49.
    Bogus, P., Merkisz, J.: Misfire detection of locomotive diesel engine by non-linear analysis. Mech. Syst. Signal Process. 19, 881–889 (2005).  https://doi.org/10.1016/j.ymssp.2004.06.004 CrossRefGoogle Scholar
  50. 50.
    Kabiraj, L., Sujith, R.I.: Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376–397 (2012).  https://doi.org/10.1017/jfm.2012.463 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Nair, V., Thampi, G., Sujith, R.I.: Engineering precursors to forewarn the onset of an impending combustion instability. In: Proceedings of the ASME Turbo Expo 2014: turbine technical conference and exposition, 4B, V04BT04A005p (2014)Google Scholar
  52. 52.
    Nair, V., Sujith, R.I.: Intermittency as a transition state in combustor dynamics: an explanation for flame dynamics near lean blowout. Combust. Sci. Technol. 187, 1821–1835 (2015).  https://doi.org/10.1080/00102202.2015.1066339 CrossRefGoogle Scholar
  53. 53.
    Seshadri, A., Nair, V., Sujith, R.I.: A reduced-order deterministic model describing an intermittency route to combustion instability. Combust. Theor. Model. 20, 1–16 (2016).  https://doi.org/10.1080/13647830.2016.1143123 MathSciNetCrossRefGoogle Scholar
  54. 54.
    Sen, A.K., Longwic, R., Litak, G., Go’rski, K.: Analysis of cycle-to-cycle pressure oscillations in a diesel engine. Mech. Syst. Signal Process. 22, 362–373 (2008).  https://doi.org/10.1016/j.ymssp.2007.07.015 CrossRefGoogle Scholar
  55. 55.
    Yang, L.P., Ding, S.L., Litak, G., Song, E.Z., Ma, X.Z.: Identification and quantification analysis of non-linear dynamics properties of combustion instability in a diesel engine. Chaos 25, 013105 (2015).  https://doi.org/10.1063/1.4899056 CrossRefGoogle Scholar
  56. 56.
    Kyrtatos, P., Brückner, C., Boulouchos, K.: Cycle-to-cycle variations in diesel engines. Appl. Energy 171, 120–132 (2016).  https://doi.org/10.1016/j.apenergy.2016.03.015 CrossRefGoogle Scholar
  57. 57.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403 (1992).  https://doi.org/10.1103/PhysRevA.45.3403 CrossRefGoogle Scholar
  58. 58.
    Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1996)CrossRefGoogle Scholar
  59. 59.
    Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. EPL Europhys. Lett. 4, 973–7 (1987)CrossRefGoogle Scholar
  60. 60.
    Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007).  https://doi.org/10.1016/j.physrep.2006.11.001 MathSciNetCrossRefGoogle Scholar
  61. 61.
    Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66, 026702 (2002).  https://doi.org/10.1103/PhysRevE.66.026702 CrossRefzbMATHGoogle Scholar
  62. 62.
    Mindlin, G.M., Gilmore, R.: Topological analysis and synthesis of chaotic time series. Physica D 58, 229–242 (1992).  https://doi.org/10.1016/0167-2789(92)90111-Y MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Zbilut, J.P., Zaldívar-Comenges, J.M., Strozzi, F.: Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Phys. Lett. A 297, 173–181 (2002).  https://doi.org/10.1016/S0375-9601(02)00436-X CrossRefzbMATHGoogle Scholar
  64. 64.
    Thiel, M., Romano, M.C., Kurths, J., Meucci, R., Allaria, E., Arecchi, F.T.: Influence of observational noise on the recurrence quantification analysis. Physica D 171, 138–152 (2002).  https://doi.org/10.1016/S0167-2789(02)00586-9 MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Schinkel, S., Dimigen, O., Marwan, N.: Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164, 45–53 (2008).  https://doi.org/10.1140/epjst/e2008-00833-5 CrossRefGoogle Scholar
  66. 66.
    Bochner, S., Chandrasekharan, K.: Fourier Transforms. Princeton University Press, Princeton (1949)zbMATHGoogle Scholar
  67. 67.
    Kaiser, G.: A Friendly Guide to Wavelets. Birkhaeuser, Boston (1994)zbMATHGoogle Scholar
  68. 68.
    Ouahabi, A., Femmam, S.: Wavelet-based multifractal analysis of 1-D and 2-D signals: New results. Analog Integr Circ S 69, 3–15 (2011).  https://doi.org/10.1007/s10470-011-9620-y CrossRefGoogle Scholar
  69. 69.
    Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)CrossRefGoogle Scholar
  70. 70.
    Sen, A.K., Litak, G., Taccani, R., Radu, R.: Wavelet analysis of cycle-to-cycle pressure variations in an internal combustion engine. Chaos Solitons Fractals 38, 886–893 (2008).  https://doi.org/10.1016/j.chaos.2007.01.041 CrossRefGoogle Scholar
  71. 71.
    Sen, A.K., Litak, G., Finney, C.E.A., Daw, C.S., Wagner, R.M.: Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets. Appl. Energy 87, 1736–43 (2010).  https://doi.org/10.1016/j.apenergy.2009.11.009 CrossRefGoogle Scholar
  72. 72.
    Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457 (1992)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Viggiano, A., Magi, V.: A comprehensive investigation on the emissions of ethanol HCCI engines. Appl. Energy 93, 277–287 (2012).  https://doi.org/10.1016/j.apenergy.2011.12.063 CrossRefGoogle Scholar
  74. 74.
    Saxena, S., Vuilleumier, D., Kozarac, D., Krieck, M., Dibble, R., Aceves, S.: Optimal operating conditions for wet ethanol in a HCCI engine using exhaust gas heat recovery. Appl. Energy 116, 269–277 (2014).  https://doi.org/10.1016/j.apenergy.2013.11.033 CrossRefGoogle Scholar
  75. 75.
    Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988).ntalsGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Power and Energy EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Biofuel Engine Research FacilityQueensland University of TechnologyBrisbaneAustralia
  3. 3.Faculty of Science, Engineering and Built EnvironmentDeakin UniversityGeelongAustralia
  4. 4.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations