Advertisement

Nonlinear Dynamics

, Volume 95, Issue 3, pp 2103–2116 | Cite as

Reconstruction of ensembles of nonlinear neurooscillators with sigmoid coupling function

  • Ilya V. SysoevEmail author
  • Vladimir I. Ponomarenko
  • Mikhail D. Prokhorov
Original Paper
  • 131 Downloads

Abstract

Inferring information about interactions between oscillatory systems from their time series is a highly debated problem. However, many approaches for solving this problem consider either linear systems or linear couplings. We propose a method for the reconstruction of ensembles of nonlinearly coupled neurooscillators described by first-order nonlinear differential equations. The method is based on the minimization of a special target function for each oscillator in the ensemble separately. To find the solution of optimization problem the nonlinear least-squares routine is used. The method does not exploit any parameterization for approximation of nonlinear functions of individual nodes. In addition, an original two-step algorithm for the removal of spurious couplings is proposed based on the clusterization of coefficients of the reconstructed coupling functions and the analysis of their variation. The method efficiency is shown for periodic and chaotic vector time series for ensembles of different size that contain from 8 to 32 oscillators. These oscillators have a cubic nonlinearity and sigmoid is considered as a coupling function. The effect of measurement noise on the results of coupling architecture reconstruction is studied in detail and the method is shown to be effective for relatively high noise (signal to noise ratio equal to eight).

Keywords

Network reconstruction Time series Neurooscillators Nonlinear coupling 

Notes

Acknowledgements

This research was funded by the Russian Science Foundation, Grant No. 14-12-00291.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Boccaletti, S., Latora, V., Morenod, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cognit. Sci. 8(9), 418–425 (2004)Google Scholar
  3. 3.
    Sompolinsky, H., Crisanti, A., Sommers, H.E.: Chaos in random neural networks. Phys. Rev. Lett. 61(3), 259–262 (1988)MathSciNetGoogle Scholar
  4. 4.
    Sysoev, I.V., Ponomarenko, V.I., Pikovsky, A.: Reconstruction of coupling architecture of neural field networks from vector time series. Commun. Nonlinear Sci. Numer. Simulat. 57, 342–351 (2018)MathSciNetGoogle Scholar
  5. 5.
    Shandilya, S.G., Timme, M.: Inferring network topology from complex dynamics. N. J. Phys. 13(1), 013004 (2011)Google Scholar
  6. 6.
    Sysoev, I.V., Ponomarenko, V.I., Kulminsky, D.D., Prokhorov, M.D.: Recovery of couplings and parameters of elements in networks of time-delay systems from time series. Phys. Rev. E 94, 052207 (2016)Google Scholar
  7. 7.
    Pikovsky, A.: Reconstruction of a neural network from a time series of firing rates. Phys. Rev. E 93, 062313 (2016)MathSciNetGoogle Scholar
  8. 8.
    Xu, Y., Zhou, W., Fang, J.: Topology identification of the modified complex dynamical network with non-delayed and delayed coupling. Nonlinear Dyn. 68(1–2), 195–205 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Yang, X., Wei, T.: Revealing network topology and dynamical parameters in delay-coupled complex network subjected to random noise. Nonlinear Dyn. 82, 319–332 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Mokhov, I.I., Smirnov, D.A.: El Niño – southern oscillation drives north atlantic oscillation as revealed with nonlinear techniques from climatic indices. Geophys. Res. Lett. 33, L03708 (2006)Google Scholar
  11. 11.
    Kaminski, M., Brzezicka, A., Kaminski, J., Blinowska, K.: Measures of coupling between neural populations based on Granger causality principle. Front. Comput. Neurosci. 10(OCT), 114 (2016)Google Scholar
  12. 12.
    Porta, A., Faes, L.: Wiener–Granger causality in network physiology with applications to cardiovascular control and neuroscience. Proceedings of the IEEE, 12 (2015)Google Scholar
  13. 13.
    Chen, Y., Rangarajan, G., Feng, J., Ding, M.: Analyzing multiple nonlinear time series with extended Granger causality. Phys. Lett. A 324(1), 26–35 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kornilov, M.V., Medvedeva, T.M., Bezruchko, B.P., Sysoev, I.V.: Choosing the optimal model parameters for Granger causality in application to time series with main timescale. Chaos, Solitons Fractal. 82, 11–21 (2016)zbMATHGoogle Scholar
  15. 15.
    Baccala, L., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001)zbMATHGoogle Scholar
  16. 16.
    Kamiński, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85, 145–157 (2001)zbMATHGoogle Scholar
  17. 17.
    Rosenblum, M.G., Pikovsky, A.S.: Detecting direction of coupling in interacting oscillators. Phys. Rev. E 64, 045202(R) (2001)Google Scholar
  18. 18.
    Tokuda, I.T., Jain, S., Kiss, I.Z., Hudson, J.L.: Inferring phase equations from multivariate time series. Phys. Rev. Lett. 99, 064101 (2007)Google Scholar
  19. 19.
    Koutlis, C., Kugiumtzis, D.: Discrimination of coupling structures using causality networks from multivariate time series. Chaos 26, 093120 (2016)Google Scholar
  20. 20.
    Kralemann, B., Pikovsky, A., Rosenblum, M.: Reconstructing phase dynamics of oscillator networks. Chaos 21, 025104 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Wu, X., Wang, W., Zheng, W.X.: Inferring topologies of complex networks with hidden variables. Phys. Rev. E 86, 046106 (2012)Google Scholar
  22. 22.
    Yang, G., Wang, L., Wang, X.: Reconstruction of complex directional networks with group lasso nonlinear conditional Granger causality. Sci. Rep. 7(1), 2991 (2017)Google Scholar
  23. 23.
    Smirnov, D.A., Andrzejak, R.G.: Detection of weak directional coupling: phase-dynamics approach versus state-space approach. Phys. Rev. E 71, 036207 (2005)MathSciNetGoogle Scholar
  24. 24.
    De Feo, O., Carmeli, C.: Estimating interdependences in networks of weakly coupled deterministic systems. Phys. Rev. E 77(2), 026711 (2008)MathSciNetGoogle Scholar
  25. 25.
    Wu, X., Sun, Z., Liang, F., Yu, C.: Online estimation of unknown delays and parameters in uncertain time delayed dynamical complex networks via adaptive observer. Nonlinear Dyn. 73(3), 1753–1768 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Shemyakin, V., Haario, H.: Online identification of large-scale chaotic system. Nonlinear Dyn. 93(2), 961–975 (2018)Google Scholar
  27. 27.
    Wang, W., Yang, R., Lai, Y., Kovanis, V., Grebogi, C.: Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101 (2011)Google Scholar
  28. 28.
    Han, X., Shen, Z., Wang, W.-X., Di, Z.: Robust reconstruction of complex networks from sparse data. Phys. Rev. Lett. 114, 28701 (2015)Google Scholar
  29. 29.
    Brunton, S., Proctor, J., Kutz, J.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U. S. A. 113, 3932–7 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Mangan, N., Brunton, S., Proctor, J., Kutz, J.: Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2, 52–63 (2016)Google Scholar
  31. 31.
    Casadiego, J., Nitzan, M., Hallerberg, S., Timme, M.: Model-free inference of direct network interactions from nonlinear collective dynamics. Nat. Commun. 8, 2192 (2017)Google Scholar
  32. 32.
    Gouesbet, G., Meunier-Guttin-Cluzel, G., Menard, O.: Chaos and its Reconstruction. Nova Science Publishers, New York (2003)Google Scholar
  33. 33.
    Bezruchko, B.P., Smirnov, Da: Extracting Knowledge From Time Series: (An Introduction to Nonlinear Empirical Modeling). Springer Series in Synergetics. Springer, New York (2010)zbMATHGoogle Scholar
  34. 34.
    Wang, W.-X., Lai, Y.-C., Grebogi, C.: Data based identification and prediction of nonlinear and complex dynamical systems. Phys. Rep. 644, 1–76 (2016)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Timme, M., Casadiego, J.: Revealing networks from dynamics: an introduction. J. Phys. A Math. Theor. 47, 343001 (2014)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Smirnov, D.A.: Quantifying causal couplings via dynamical effects: a unifying perspective. Phys. Rev. E 90, 062921 (2014)Google Scholar
  37. 37.
    Richards, F.J.: A flexible growth function for empirical use. J. Exp. Bot. 10(2), 290–300 (1959)Google Scholar
  38. 38.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Opt. 6, 418–445 (1996)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Kera, H., Hasegawa, Y.: Noise-tolerant algebraic method for reconstruction of nonlinear dynamical systems. Nonlinear Dyn. 85(1), 675–692 (2016)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Upadhyay, R.K., Mondal, A., Paul, C.: A method for estimation of parameters in a neural model with noisy measurements. Nonlinear Dyn. 85(4), 2521–2533 (2016)MathSciNetGoogle Scholar
  43. 43.
    Savitzky, A., Golay, M.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 38(8), 1627–1639 (1964)Google Scholar
  44. 44.
    Moré, J.J., Sorensen, D.C., Hillstrom, K.E., Garbow, B.S.: The minpack project. In: Cowell, W.J. (ed.) Sources and Development of Mathematical Software, pp. 88–111. Prentice-Hall, Upper Saddle River (1984)Google Scholar
  45. 45.
    Millman, K.J., Aivazis, M.: Python for scientists and engineers. Comput. Sci. Eng. 13, 9–12 (2011)Google Scholar
  46. 46.
    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenom. 65, 117–134 (1993)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Baake, E., Baake, M., Bock, H., Briggs, K.: Fitting ordinary differential equations to chaotic data. Phys. Rev. A 45(8), 5524–5529 (1992)Google Scholar
  48. 48.
    Sysoev, I.V., Smirnov, D.A., Bezruchko, B.P.: Identification of chaotic systems with hidden variables (modified Bock’s algorithm). Chaos, Solitons Fractal. 29, 82–90 (2006)zbMATHGoogle Scholar
  49. 49.
    Smirnov, D.A., Sysoev, I.V., Seleznev, E.P., Bezruchko, B.P.: Global reconstruction from nonstationary data. Tech. Phys. Lett. 29(10), 824–827 (2003)Google Scholar
  50. 50.
    Lüttjohann, A., van Luijtelaar, G.: The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal lfps in absence epilepsy. Neurobiol. Dis. 47, 47–60 (2012)Google Scholar
  51. 51.
    Coenen, A.M.L., van Luijtelaar, E.L.J.M.: Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav. Genet. 33, 635–655 (2003)Google Scholar
  52. 52.
    Jun, J.J., Steinmetz, N.A., Siegle, J.H., Denman, D.J., Bauza, M., Barbarits, B., Lee, A.K., Anastassiou, C.A., Çağatay Aydın, A.A., Barbic, M., Blanche, T.J., Bonin, V., Couto, J., Dutta, B., Gratiy, S.L., Gutnisky, D.A., Häusser, M., Karsh, B., Ledochowitsch, P., Lopez, C.M., Mitelut, C., Musa, S., Okun, M., Pachitariu, M., Putzeys, J., Rich, P.D., Rossant, C., lung Sun, W., Svoboda, K., Carandini, M., Harris, K.D., Koch, C., O’Keefe, J., Harris, T.D.: Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Saratov State UniversitySaratovRussia
  2. 2.Saratov Branch of the Institute of Radioengineering and Electronics of Russian Academy of SciencesSaratovRussia

Personalised recommendations