Nonlinear Dynamics

, Volume 95, Issue 3, pp 1941–1956 | Cite as

Dynamics of a stochastic system driven by cross-correlated sine-Wiener bounded noises

  • Can-Jun WangEmail author
  • Qiao-Feng Lin
  • Yuan-Gen Yao
  • Ke-Li Yang
  • Meng-Yu Tian
  • Ya Wang
Original Paper


The sine-Wiener noise, as one new type of bounded noise and a natural tool to model fluctuations in dynamical systems, has been applied to problems in a variety of areas, especially in biomolecular networks and neural models. In this paper, by virtue of the Novikov theorem, Fox’s approach, and the ansatz of Hanggi, an approximate Fokker–Planck equation is derived for an one-dimensional Langevin-type equation with cross-correlated sine-Wiener noise. Meanwhile, the dynamical characters of a bistable system driven by cross-correlated sine-Wiener noise are investigated by applying the approximate theoretical method. For the bistable system, the cross-correlation intensity \(\lambda \) can induce the reentrance-like phase transition, while the other noise intensities and the self-correlation time, except for the self-correlation time of additive bounded noise, can induce the first-order-like phase transition. The transition from the stable state to another one can be accelerated by \(\alpha \) (additive bounded noise intensity), \(\tau _1\) (the self-correlation time of the multiplicative bounded noise), and \(\tau _2\) (the self-correlation time of the additive bounded noise) and can be restrained with \(\lambda \) and \(\tau _3\) (self-correlation time of the cross-correlation bounded noise). It is interesting that the noise-enhanced stability phenomenon is observed with D (multiplicative bounded noise intensity) varying for the positive correlation (\(\lambda >0\)) and is enhanced as \(\lambda \) increases. The numerical results are in basic agreement with the theoretical predictions.


Cross-correlated sine-Wiener bounded noises Fokker–Planck equation Bistable dynamical system 



This work is supported by the National Natural Science Foundation of China ( Grant No. 11205006), the Natural Science New Star of Science and Technologies Research Plan in Shaanxi Province of China (Grant No. 2014KJXX-77), the Science Foundation of the Education Bureau of Shaanxi Province, China (Grant No. 15JK1045), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JM1034).


  1. 1.
    Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)CrossRefGoogle Scholar
  2. 2.
    Horsthemke, W., Lefever, R.: Noise-Induced Transitions: Theory and Applications in Physics, Chemistry and Biology. Springer, Berlin (1984)zbMATHGoogle Scholar
  3. 3.
    Sagues, F., Sancho, J.M., Ojalvo, J.G.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79, 829 (2007)CrossRefGoogle Scholar
  4. 4.
    Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hänggi, P., Marchesoni, F.: Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387 (2009)CrossRefGoogle Scholar
  6. 6.
    Mantegna, R.N., Spagnolo, B.: Noise enhanced stability in an unstable system. Phys. Rev. Lett. 76, 563 (1996)CrossRefGoogle Scholar
  7. 7.
    Hänggi, P.: Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 3(3), 285–290 (2002)CrossRefGoogle Scholar
  8. 8.
    Tsimring, L.S.: Noise in biology. Rep. Prog. Phys. 77(2), 026601 (2014)CrossRefGoogle Scholar
  9. 9.
    Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, C.N., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J Mod. Phys. B 32, 1830003 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wu, F., Wang, C., Jin, W., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    d’Onofrio, A.: “Fuzzy oncology”: fuzzy noise induced bifurcations and their application to anti-tumor chemotherapy. Appl. Math. Lett. 21, 662 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    d’Onofrio, A.: Bounded-noise-induced transitions in a tumor-immune system interplay. Phys. Rev. E 81, 021923 (2010)CrossRefGoogle Scholar
  14. 14.
    Bobryk, R.V., Chrzeszczyk, A.: Transition induced by bounded noise. Physica A 358, 263–272 (2005)CrossRefGoogle Scholar
  15. 15.
    Mandelbrot, B.: The variation of certain speculative prices. In: Fractals and Scaling in Finance, pp. 371–418. Springer, New York (1997)Google Scholar
  16. 16.
    Gurley, K., Kareem, A.: Simulation of correlated non-Gaussian pressure fields. Meccanica 33(3), 309–317 (1998)CrossRefzbMATHGoogle Scholar
  17. 17.
    Stathopoulos, T.: PDF of wind pressures on low-rise buildings. J. Struct. Div. 106(5), 973–990 (1980)Google Scholar
  18. 18.
    Ochi, M.K.: Non-Gaussian random processes in ocean engineering. Probab. Eng. Mech. 1(1), 28–39 (1986)CrossRefGoogle Scholar
  19. 19.
    Andrews, D.F., Herzberg, A.M.: Data: A Collection of Problems from Many Fields for the Student and Research Worker. Springer, Berlin (2012)zbMATHGoogle Scholar
  20. 20.
    Iyengar, R.N., Jaiswal, O.R.: A new model for non-Gaussian random excitations. Probab. Eng. Mech. 8(3–4), 281–287 (1993)CrossRefGoogle Scholar
  21. 21.
    Borland, L.: Ito-Langevin equations within generalized thermostatistics. Phys. Lett. A 245, 67 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wio, H.S.: On the role of non-Gaussian noises on noise-induced phenomena. In: Nonextensive Entropy: Interdisciplinary Applications, pp. 177–193 (2003)Google Scholar
  23. 23.
    Wio, H.S., Toral, R.: Effect of non-Gaussian noise sources in a noise-induced transition. Physica D 193, 161 (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Doering, C.R.: A stochastic partial differential equation with multiplicative noise. Phys. Lett. A 122(3–4), 133 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sargsyan, K.V., Smereka, P.: A numerical method for some stochastic differential equations with multiplicative noise. Phys. Lett. A 344(2–4), 149 (2005)zbMATHGoogle Scholar
  26. 26.
    Dubkov, A.A., Spagnolo, B., Uchaikin, V.V.: Lévy flight superdiffusion: an introduction. Int. J. Bifurc. Chaos 18(09), 2649 (2008)CrossRefzbMATHGoogle Scholar
  27. 27.
    Augello, G., Valenti, D., Spagnolo, B.: Non-Gaussian noise effects in the dynamics of a short overdamped Josephson junction. Eur. Phys. J. B 78(2), 225 (2010)CrossRefGoogle Scholar
  28. 28.
    Zhu, W.Q., Cai, G.Q.: On Bounded stochastic processes. In: d’Onofrio, A. (ed.) Bounded Noises in Physics, Biology and Engineering. Verlag, Birkauser (2016)Google Scholar
  29. 29.
    Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ning, L.J., Liu, P.: The effect of sine-Wiener noises on transition in a genotype selection model with time delays. Eur. Phys. J. B 89(9), 201 (2016)CrossRefGoogle Scholar
  31. 31.
    Liu, P., Ning, L.J.: Transitions induced by cross-correlated bounded noises and time delay in a genotype selection model. Physica A 441, 32–39 (2016)CrossRefGoogle Scholar
  32. 32.
    de Franciscis, S., d’Onofrio, A.: Spatiotemporal bounded noises and transitions induced by them in solutions of the real Ginzburg–Landau model. Phys. Rev. E 86(2), 021118 (2012)CrossRefGoogle Scholar
  33. 33.
    de Franciscis, S., d’Onofrio, A.: Spatio-temporal sine-Wiener bounded noise and its effect on Ginzburg–Landau model. Nonlinear Dyn. 74(3), 607 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Bobryk, R.V., Chrzeszczyk, A.: Transitions in a Duffing oscillator excited by random noise. Nonlinear Dyn. 51, 541 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    de Franciscis, S., d’Onofrio, A.: Cellular polarization: interaction between extrinsic bounded noises and the wave-pinning mechanism. Phys. Rev. E 88(3), 032709 (2013)CrossRefGoogle Scholar
  36. 36.
    Guo, W., Du, L.C., Mei, D.C.: Transitions induced by time delays and cross-correlated sine-Wiener noises in a tumor-immune system interplay. Physica A 391, 1270 (2012)CrossRefGoogle Scholar
  37. 37.
    d’Onofrio, A., Gandolfi, A.: Resistance to antitumor chemotherapy due to bounded noise induced transitions. Phys. Rev. E 82(6), 061901 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Guo, W., Mei, D.C.: Stochastic resonance in a tumor-immune system subject to bounded noises and time delay. Physica A 416, 90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Long, F., Guo, W., Mei, D.C.: Stochastic resonance induced by bounded noise and periodic signal in an asymmetric bistable system. Physica A 391(22), 5305–5310 (2012)CrossRefGoogle Scholar
  40. 40.
    de Franciscis, S., Caravagna, G., d’Onofrio, A.: Bounded noises as a natural tool to model extrinsic fluctuations in biomolecular networks. Nat. Comput. 13, 297 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    d’Onofrio, A., Caravagna, G., de Franciscis, S.: Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription. Physica A 492, 2056–2068 (2018)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Caravagna, G., Mauri, G., d’Onofrio, A.: The interplay of intrinsic and extrinsic bounded noises in biomolecular networks. PLoS ONE 8(2), e51174 (2013)CrossRefGoogle Scholar
  43. 43.
    de Franciscis, S., Caravagna, G., d’Onofrio, A.: Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif. Sci. Rep. 6, 26980 (2016)CrossRefGoogle Scholar
  44. 44.
    Fuliński, A., Telejko, T.: On the effect of interference of additive and multiplicative noises. Phys. Lett. A 152(1), 11 (1991)CrossRefGoogle Scholar
  45. 45.
    Madureira, A.J., Hänggi, P., Wio, H.S.: Giant suppression of the activation rate in the presence of correlated white noise sources. Phys. Lett. A 217(4), 248 (1996)CrossRefGoogle Scholar
  46. 46.
    Berdichevsky, V., Gitterman, M.: Stochastic resonance in linear systems subject to multiplicative and additive noise. Phys. Rev. E 60(2), 1494 (1999)CrossRefGoogle Scholar
  47. 47.
    Zeng, C., Zeng, J., Liu, F., Wang, H.: Impact of correlated noise in an energy depot model. Sci. Rep. 6, 19591 (2016)CrossRefGoogle Scholar
  48. 48.
    Wu, D.J., Cao, L., Ke, S.Z.: Bistable kinetic model driven by correlated noises: steady-state analysis. Phys. Rev. E 50, 2496 (1994)CrossRefGoogle Scholar
  49. 49.
    Bemmo, D.T., Siewe, M.S., Tchawoua, C.: Combined effects of correlated bounded noises and weak periodic signal input in the modified FitzHugh–Nagumo neural model. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1275–1287 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Yao, Y., Deng, H., Yi, M., Ma, J.: Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons. Sci. Rep. 7, 43151 (2017)CrossRefGoogle Scholar
  51. 51.
    Yao, Y., Deng, H., Ma, C.Z., Yi, M., Ma, J.: Impact of bounded noise and rewiring on the formation and instability of spiral waves in a small-world network of Hodgkin–Huxley neurons. PLoS ONE 12(1), e0171273 (2017)CrossRefGoogle Scholar
  52. 52.
    Yao, Y., Ma, C.Z., Wang, C.J., Yi, M., Gui, R.: Detection of sub-threshold periodic signal by multiplicative and additive cross-correlated sine-Wiener noises in the FitzHugh–Nagumo neuron. Physica A 492, 1247–1256 (2018)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Yao, Y., Ma, J.: Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cogn. Neurodyn. 12(3), 343–349 (2018)CrossRefGoogle Scholar
  54. 54.
    d’Onofrio, A.: A Bounded Noises in Physics, Biology, and Engineering. Modeling and Simulation in Science, Engineering and Technology. Springer, New York (2013)zbMATHGoogle Scholar
  55. 55.
    Zhu, S.Q.: Steady-state analysis of a single-mode laser with correlations between additive and multiplicative noise. Phys. Rev. A 47, 2405–2408 (1993)CrossRefGoogle Scholar
  56. 56.
    Van Kampen, N.G.: Stochastic differential equation. Phys. Rep. 24, 171–228 (1976)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Liang, G.Y., Cao, L., Wu, D.J.: Approximate Fokker–Planck equation of system driven by multiplicative colored noises with colored cross-correlation. Physica A 335, 371 (2004)CrossRefGoogle Scholar
  58. 58.
    Sancho, J.M., Miguel, S.M., Katz, S.L., Gunton, J.D.: Analytical and numerical studies of multiplicative noise. Phys. Rev. A 26, 1589 (1989)CrossRefGoogle Scholar
  59. 59.
    Novikov, E.A.: Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20, 1290 (1965)MathSciNetGoogle Scholar
  60. 60.
    Owchar, M.: Wiener integrals of multiple variations. Proc. Am. Math. Soc. 3, 459 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Furutsu, K.: On the statistical theory of electromagnetic waves in a fluctuating medium (I). J. Res. NBS D 67, 303 (1963)zbMATHGoogle Scholar
  62. 62.
    Hänggi, P., Mroczkowski, T.T., Moss, F., McClintock, P.V.E.: Bistability driven by colored noise: theory and experiment. Phys. Rev. A 32, 695 (1985)CrossRefGoogle Scholar
  63. 63.
    Castro, F., Sanchez, A.D., Wio, H.S.: Reentrance phenomena in noise induced transitions. Phys. Rev. Lett. 75, 1691 (1995)CrossRefGoogle Scholar
  64. 64.
    Liu, Q., Jia, Y.: Fluctuations-induced switch in the gene transcriptional regulatory system. Phys. Rev. E 70, 041907 (2004)CrossRefGoogle Scholar
  65. 65.
    Jia, Y., Li, J.R.: Reentrance phenomena in a bistable kinetic model driven by correlated noise. Phys. Rev. Lett. 78, 994 (1997)CrossRefGoogle Scholar
  66. 66.
    Mei, D.C., Xie, C.W., Zhang, L.: Effects of cross correlation on the relaxation time of a bistable system driven by cross-correlated noise. Phys. Rev. E 68, 051102 (2003)CrossRefGoogle Scholar
  67. 67.
    Masoliver, J., West, B.J., Lindenbergerg, K.: Bistability driven by Gaussian colored noise: first-passage times. Phys. Rev. A 35, 3086 (1987)CrossRefGoogle Scholar
  68. 68.
    Jia, Y., Li, J.R.: Transient properties of a bistable kinetic model with correlations between additive and multiplicative noises: mean first-passage time. Phys. Rev. E 53(6), 5764 (1996)CrossRefGoogle Scholar
  69. 69.
    Wang, C.J., Yang, K.L., Du, C.Y.: Multiple cross-correlation noise induced transition in a stochastic bistable system. Physica A 470, 261–274 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Can-Jun Wang
    • 1
    Email author
  • Qiao-Feng Lin
    • 2
  • Yuan-Gen Yao
    • 3
  • Ke-Li Yang
    • 1
  • Meng-Yu Tian
    • 2
  • Ya Wang
    • 1
  1. 1.Nonlinear Research InstituteBaoji University of Arts and SciencesBaojiChina
  2. 2.Institute of Geography and EnvironmentBaoji University of Arts and SciencesBaojiChina
  3. 3.Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanChina

Personalised recommendations