Advertisement

Nonlinear Dynamics

, Volume 95, Issue 3, pp 1867–1877 | Cite as

Dynamics of some novel breather solutions and rogue waves for the PT-symmetric nonlocal soliton equations

  • Fajun YuEmail author
  • Li Li
Original Paper

Abstract

A generalized nonlocal nonlinear Hirota (GNNH) equation with variable coefficients is presented, which can be reduced into the nonlocal Hirota equation with the self-induced PT-symmetric potential. Especially, the nonlocal Gross–Pitaevskii (NGP) equation with the self-induced PT-symmetric potential is derived from the GNNH equation. Then, we obtain some novel non-autonomous breather solutions and rogue waves of GNNH equation via similarity and Hirota methods, and consider some controllable behaviors of these non-autonomous wave solutions. Furthermore, some properties of the non-autonomous rational (NR) waves are investigated analytically for the NGP equation. The trajectories of peaks and depressions of the non-autonomous rogue waves are produced by means of analytical method, and the dynamical stabilities of the NR solution are derived through the numerical method. The obtained results are different from the solutions of the local nonlinear equations. Some different propagation phenomena can also be produced through manipulating non-autonomous rogue waves, which can present the potential applications for the rogue wave phenomena in nonlocal wave models.

Keywords

Nonlocal Hirota equation Breather solution Rogue wave 

Notes

Acknowledgements

This work was sponsored by the Special Fund of Liaoning Provincial Universities’ Fundamental Scientific Research Projects, China (Grant No. LQN201711).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zhong, W.P., Belic, M.R., Xie, H., Huang, T., Lu, Y.: Three dimensional spatiotemporal solitary waves in strongly nonlocal media. Opt. Commun. 283, 5213–5217 (2010)CrossRefGoogle Scholar
  4. 4.
    Wang, Q., Li, J.Z.: Hermite–Gaussian vector soliton in strong local media. Opt. Commun. 333, 253–260 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)CrossRefGoogle Scholar
  6. 6.
    Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82, 1015–1018 (2010)CrossRefGoogle Scholar
  7. 7.
    Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)CrossRefGoogle Scholar
  8. 8.
    Karjanto, N., Hanif, W., Malomed, B.A., Susanto, H.: Interactions of bright and dark solitons with localized PT-symmetric potentials (2014). arXiv:1401.4241
  9. 9.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature (Lond.) 488, 167–171 (2012)CrossRefGoogle Scholar
  11. 11.
    Bang, O., Krolikowski, W., Wyller, J., Rasmussen, J.J.: Collapse arrest and soliton stabilization in nonlocal nonlinear media. Phys. Rev. E 66, 046619 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)CrossRefGoogle Scholar
  13. 13.
    Sinha, D., Ghosh, P.K.: Symmetries and exact solutions of a class of nonlocal nonlinear Schrödinger equations with self-induced parity-time-symmetric potential. Phys. Rev. E 91, 042908 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yan, Z.Y.: Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: a unified two-parameter model. Appl. Math. Lett. 47, 61–68 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Stalin, S., Senthilvelan, M., Lakshmanan, M.: Nonstandard bilinearization of \(PT\)-invariant nonlocal nonlinear Schrödinger equation: bright soliton solutions. Phys. Lett. A 381, 2380–2385 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Song, C.Q., Xiao, D.M., Zhu, Z.N.: A general integrable nonlocal coupled nonlinear Schrödinger equation (2015). arXiv:1505.05311 [nlin.SI]
  17. 17.
    Li, Y.Q., Liu, W.J., Wong, P., Huang, L.G., Pan, N.: Dromion structures in the \((2+1)\) dimensional nonlinear Schrödinger equation with a parity-time-symmetric potential. Appl. Math. Lett. 47, 8–12 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma, L.Y., Zhu, Z.N.: Nonlocal nonlinear Schrödinger equation and its discrete version: soliton solutions and gauge equivalence. J. Math. Phys. 57, 083507 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wen, X.Y., Yan, Z.Y., Yang, Y.Q.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yu, F.J., Li, L.: Vector dark and bright soliton wave solutions and collisions for spin-1 Bose–Einstein condensate. Nonlinear Dyn. 87, 2697–2713 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, L., Yu, F.J.: Discrete bright–dark soliton solutions and parameters controlling for the coupled Ablowitz–Ladik equation. Nonlinear Dyn. 89, 2403–2414 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yu, F.J.: Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz–Musslimani equation with PT-symmetric potential. Chaos 27, 023108 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yu, F.J.: Localized analytical solutions and numerically stabilities of generalized Gross–Pitaevskii \((\text{ GP }(p, q))\) equation with specific external potentials. Appl. Math. Lett. 85, 1–7 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xu, T., Li, H., Zhang, H., Li, M., Lan, S.: Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 63, 88–94 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear. Sci. Numer. Simul. 62, 480–488 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Song, C.Q., Xiao, D.M., Zhu, Z.N.: Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation. Commun. Nonlinear. Sci. Numer. Simul. 45, 13–28 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yan, Z.Y., Zhang, X.F., Liu, W.M.: Nonautonomous matter waves in a waveguide. Phys. Rev. A 84, 023627 (2011)CrossRefGoogle Scholar
  29. 29.
    Biondini, G., Wang, H.: Solitons, BVPs and a nonlinear method of images. J. Phys. A Math. Theor. 42, 205207 (2009)CrossRefGoogle Scholar
  30. 30.
    Xu, Z.X., Chow, K.W.: Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation. Appl. Math. Lett. 56, 72–77 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yu, F.J.: Nonautonomous rogue waves and ‘catch’ dynamics for the combined Hirota–LPD equation with variable coefficients. Commun. Nonlinear. Sci. Numer. Simul. 34, 142–153 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematics and Systematic SciencesShenyang Normal UniversityShenyangChina

Personalised recommendations