Advertisement

Model electrical activity of neuron under electric field

  • Jun Ma
  • Ge Zhang
  • Tasawar Hayat
  • Guodong Ren
Original Paper
  • 90 Downloads

Abstract

Continuous pump and transmission of charges such as calcium, potassium, sodium in the cell can induce time-varying electromagnetic field, and the induced electric field can further modulate the propagation of ions in the cell. Based on the physical laws of static electric field, the effect of electric field in isolate neuron is investigated by introducing additive variable E on the model. Each neuron is considered as a charged body with complex distribution of charges, and electric field is triggered to receive and give response to external electric field and electric stimulus. That is, the electric field is considered as a new variable to describe the polarization modulation of media resulting from external electric field and intrinsic change of density distribution in charges or ions. The dynamical behaviors in electrical activities are analyzed and discussed in the new neuron model, and it confirms that electric field can cause distinct mode transition in electrical activities of neuron exposed to different kinds of electric field. It could provide new insights to understand signal encoding and propagation in nervous system. Finally, it also suggests that new model can be used for signal propagation between neurons when synapse coupling is suppressed.

Keywords

Neuron model setting Bursting Spiking Electric field Bifurcation 

Notes

Acknowledgements

This project is supported by National Natural Science Foundation of China under Grants No.11672122, 11765011.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no financial or non-financial competing interests and all of the authors agree to the publication of this paper.

Human and animal participants

This research do not involve any Human Participants and/or Animals.

References

  1. 1.
    Tang, J., Zhang, J., Ma, J., et al.: Astrocyte calcium wave induces seizure-like behavior in neuron network. Sci. China Technol. Sci. 60, 1011–1018 (2017)CrossRefGoogle Scholar
  2. 2.
    Guo, S.L., Tang, J., Ma, J., et al.: Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Complexity 2017, 4631602 (2017)MathSciNetGoogle Scholar
  3. 3.
    Yue, Y., Liu, L., Yang, Y., et al.: Dynamical response, information transition and energy dependence in a neuron model driven by autapse. Nonlinear Dyn. 90, 2893–2902 (2017)CrossRefGoogle Scholar
  4. 4.
    Wang, L., Wang, H., Yu, L., et al.: Role of axonal sodium-channel band in neuronal excitability. Phys. Rev. E 84, 052901 (2011)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Gu, H.: The distinct stochastic and deterministic dynamics between period-adding and period-doubling bifurcations of neural bursting patterns. Nonlinear Dyn. 87, 2541–2562 (2017)CrossRefGoogle Scholar
  6. 6.
    Gu, H., Pan, B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zonta, M., Angulo, M.C., Gobbo, S., et al.: Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6(1), 43 (2003)CrossRefGoogle Scholar
  8. 8.
    Haydon, P.G., Carmignoto, G.: Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86(3), 1009–1031 (2006)CrossRefGoogle Scholar
  9. 9.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)CrossRefGoogle Scholar
  10. 10.
    Noble, D.: Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature 188(4749), 495 (1960)CrossRefGoogle Scholar
  11. 11.
    Rall, W.: Electrophysiology of a dendritic neuron model. Biophys. J. 2(2 Pt 2), 145 (1962)CrossRefGoogle Scholar
  12. 12.
    Nagumo, J., Sato, S.: On a response characteristic of a mathematical neuron model. Kybernetik 10, 155–164 (1972)CrossRefGoogle Scholar
  13. 13.
    Achard, P., De Schutter, E.: Complex parameter landscape for a complex neuron model. PLoS Comput. Biol. 2, e94 (2006)CrossRefGoogle Scholar
  14. 14.
    Tsumoto, K., Kitajima, H., Yoshinaga, T., et al.: Bifurcations in Morris–Lecar neuron model. Neurocomput 69(4–6), 293–316 (2006)CrossRefGoogle Scholar
  15. 15.
    Kasabov, N.: To spike or not to spike: a probabilistic spiking neuron model. Neural Netw. 23, 16–19 (2010)CrossRefGoogle Scholar
  16. 16.
    Shilnikov, A., Calabrese, R.L., Cymbalyuk, G.: Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 056214 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gerstner, W., Naud, R.: How good are neuron models? Science 326(5951), 379–380 (2009)CrossRefGoogle Scholar
  18. 18.
    González-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurcat. Chaos 17(9), 3071–3083 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gosak, M., Markovič, R., Dolenšek, J., et al.: Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018)CrossRefGoogle Scholar
  20. 20.
    Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bera, B.K., Majhi, S., Ghosh, D., et al.: Chimera states: effects of different coupling topologies. EPL 118, 10001 (2017)CrossRefGoogle Scholar
  22. 22.
    Rostami, Z., Jafari, S.: Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn Neurodyn 12(2), 235–254 (2018)CrossRefGoogle Scholar
  23. 23.
    Ma, J., Song, X.L., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomput 167, 378–389 (2015)CrossRefGoogle Scholar
  24. 24.
    Sun, X., Perc, M., Kurths, J.: Effects of partial time delays on phase synchronization in Watts–Strogatz small-world neuronal networks. Chaos 27, 053113 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sun, X., Li, G.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89, 2509–2520 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kim, S.Y., Lim, W.: Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn. Neurodyn. 12(3), 315–342 (2018)CrossRefGoogle Scholar
  27. 27.
    Kim, S.Y., Lim, W.: Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn. Neurodyn. 11(5), 395–413 (2017)CrossRefGoogle Scholar
  28. 28.
    Ma, J., Qin, H.X., Song, X.L., et al.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)CrossRefGoogle Scholar
  29. 29.
    Jin, W., Lin, Q., Wang, A., et al.: Computer simulation of noise effects of the neighborhood of stimulus threshold for a mathematical model of homeostatic regulation of sleep-wake cycles. Complexity 2017, 4797545 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, C., Lv, M., Alsaedi, A., et al.: Synchronization stability and pattern selection in a memristive neuronal network. Chaos 27, 113108 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang, G., Wu, F.Q., Hayat, T., et al.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. Numer. Simulat. 65, 79–90 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Linares-Barranco, B., Sánchez-Sinencio, E., Rodríguez-Vázquez, A., et al.: A CMOS implementation of FitzHugh–Nagumo neuron model. IEEE J. Solid-St Circ 26(7), 956–965 (1991)CrossRefGoogle Scholar
  33. 33.
    Ren, G., Zhou, P., Ma, J., et al.: Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int. J. Bifurcat. Chaos 27, 1750187 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wu, X.Y., Ma, J., Yuan, L.H., et al.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–126 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wei, H., Bu, Y., Dai, D.: A decision-making model based on a spiking neural circuit and synaptic plasticity. Cogn. Neurodyn. 11(5), 415–431 (2017)CrossRefGoogle Scholar
  36. 36.
    Hu, X.Y., Liu, C.X., Liu, L., et al.: An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn. 84, 2317–2332 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hu, X.Y., Liu, C.X., Liu, L., et al.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91, 1541–1554 (2018)CrossRefGoogle Scholar
  38. 38.
    Ren, G., Xue, Y., Li, Y., et al.: Field coupling benefits signal exchange between Colpitts systems. Appl. Math. Comput. 342, 45–54 (2019)MathSciNetGoogle Scholar
  39. 39.
    Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)CrossRefGoogle Scholar
  40. 40.
    Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)CrossRefGoogle Scholar
  41. 41.
    Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomput 205, 375–381 (2016)CrossRefGoogle Scholar
  42. 42.
    Wu, F., Wang, C., Jin, W., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Phys. A 469, 81–88 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Xu, Y., Ying, H.P., Jia, Y., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)CrossRefGoogle Scholar
  44. 44.
    Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod Phys. B 31, 1650251 (2017)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ge, M.Y., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)CrossRefGoogle Scholar
  46. 46.
    Wu, F.Q., Wang, C.N., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)CrossRefGoogle Scholar
  47. 47.
    Ma, J., Wu, F.Q., Hayat, T., et al.: Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Phys. A 486, 508–516 (2017)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Wang, Y., Wang, C., Ren, G., et al.: Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dyn. 89, 1967–1987 (2017)CrossRefGoogle Scholar
  49. 49.
    Zhang, G., Wang, C., Alzahrani, F., et al.: Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos Solitons Fractals 108, 15–24 (2018)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Lu, L.L., Jia, Y., Liu, W.H., et al.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, 7628537 (2017)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Fox, R.F., Gatland, I.R., Roy, R., et al.: Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38(11), 5938–5940 (1988)CrossRefGoogle Scholar
  52. 52.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)CrossRefGoogle Scholar
  53. 53.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc IRE 50, 2061–2070 (1962)CrossRefGoogle Scholar
  54. 54.
    Masoliver, M., Masoller, C.: Sub-threshold signal encoding in coupled FitzHugh–Nagumo neurons. Sci. Rep. 8, 8276 (2018)CrossRefGoogle Scholar
  55. 55.
    Yao, Y., Ma, J.: Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cogn Neurodyn. 12, 343–349 (2018)CrossRefGoogle Scholar
  56. 56.
    Guillamon, A., Prohens, R., Teruel, A.E., et al.: Estimation of synaptic conductance in the spiking regime for the McKean neuron Model. SIAM J. Appl. Dyn. Sys. 16, 1394–1424 (2017)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Masoliver, M., Malik, N., Schöll, E., et al.: Coherence resonance in a network of FitzHugh–Nagumo systems: interplay of noise, time-delay, and topology. Chaos 27, 101102 (2017)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Zhu, J., Kong, C., Liu, X.: Subthreshold and suprathreshold vibrational resonance in the FitzHugh–Nagumo neuron model. Phys. Rev. E 94, 032208 (2016)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Fu, Y.X., Kang, Y.M., Xie, Y.: Subcritical Hopf bifurcation and stochastic resonance of electrical activities in neuron under electromagnetic induction. Front Comput. Neurosci. 12, 6 (2018)CrossRefGoogle Scholar
  60. 60.
    Ullner, E., Zaikin, A., Garcia-Ojalvo, J., et al.: Vibrational resonance and vibrational propagation in excitable systems. Phys. Lett. A 312, 348–354 (2003)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Wang, C., He, Y., Ma, J., et al.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20, 64–73 (2014)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Storace, M., Linaro, D., de Lange, E.: The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18, 033128 (2008)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature (London) 296, 162–164 (1982)CrossRefGoogle Scholar
  64. 64.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)CrossRefGoogle Scholar
  65. 65.
    Lv, M., Ma, J., Yao, Y. et al.: Synchronization and wave propagation in neuronal network under field coupling, Sci China Technol Sci 61:  https://doi.org/10.1007/s11431-018-9268-2(2018)
  66. 66.
    Xu, Y., Jia, Y., Ma, J., et al.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)CrossRefGoogle Scholar
  67. 67.
    Ma, J., Wu, F., Alsaedi, A., et al.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93, 2057–2069 (2018)CrossRefGoogle Scholar
  68. 68.
    Schmid, G., Goychuk, I., Hänggi, P.: Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin–Huxley model. Phys. Biol. 1, 61–66 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsLanzhou University of TechnologyLanzhouChina
  2. 2.School of ScienceChongqing University of Posts and TelecommunicationsChongqingChina
  3. 3.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations