Advertisement

New sufficient conditions on global asymptotic synchronization of inertial delayed neural networks by using integrating inequality techniques

  • Zhengqiu Zhang
  • Ling Ren
Original Paper
  • 100 Downloads

Abstract

In this paper, the global asymptotic synchronization of a class of inertial delayed neural networks is investigated. Instead of using conventional study methods of global exponential/asymptotic synchronization: linear matrix inequality method, matrix measure strategy and stability theory methods, by using constructed integrating inequality and inequality techniques, we present two new sufficient conditions on global asymptotic synchronization for the drive-response inertial delayed neural networks under two new controllers by using different Lyapunov functions from those used in the existing papers. The presented results are more concise and easy to verify in practice than those obtained in existing papers. Hence, our results extend the study method of global synchronization for delayed neural networks.

Keywords

Inertial delayed neural networks Global asymptotic synchronization Integrating inequality techniques Without applying conventional study method 

References

  1. 1.
    Liu, Q., Liao, X., Liu, Y., Zhou, S., Guo, S.: Dynamics of an inertial two-neuron system with time delay. Nonlinear Dyn. 58, 573–609 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Liu, Q., Liao, X., Guo, S., Wu, Y.: Stability of bifurcating periodic solutions for a single delayed inertial neuron model under periodic excitation. Nonlinear Anal. Real World Appl. 10, 2384–2395 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ke, Y.Q., Miao, C.F.: Stability analysis of inertial Cohen–Grossberg-type neutral networks with time delays. Neurocomputing 117, 196–205 (2013)CrossRefGoogle Scholar
  4. 4.
    Ke, Y.Q., Miao, C.F.: Stability and existence of periodic solutions in inertial BAM neural networks with time delay. Neural Comput. Appl. 23(3–4), 1089–1089 (2013)Google Scholar
  5. 5.
    Lakshmanan, S., Lim, C.P., Prakash, M., Nahavandi, S., Balasubramaniam, P.: Neutral-type of delayed inertial neural networks and their stability analysis using the LMI approach. Neurocomputing 230, 243–250 (2017)CrossRefGoogle Scholar
  6. 6.
    Zhang, Z.Q., Quan, Z.Y.: Global exponential stability via inequality technique for inertial BAM neural networks with time delays. Neurocomputing 151, 1316–1326 (2015)CrossRefGoogle Scholar
  7. 7.
    Yu, S.H., Zhang, Z.Q., Quan, Z.Y.: New global exponential stability conditions for inertial Cohen–Grossberg neural networks with time delays. Neurocomputing 151, 1446–1454 (2015)CrossRefGoogle Scholar
  8. 8.
    Hu, J.Q., Cao, J.D., Alofi, A., AL-Mazrooei, A., Elaiw, A.: Pinning synchronization of coupled inertial delayed neural networks. Cognit. Neurodyn. 9(3), 341–350 (2015)CrossRefGoogle Scholar
  9. 9.
    Cao, J.D., Wan, Y.: Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw. 53, 165–172 (2014)CrossRefGoogle Scholar
  10. 10.
    Rakkiyappan, R., UdhayaKumari Kumari, E., Chandrasekar, A., Krishnasamy, R.: Synchronization and periodicity of coupled inertial memristive neural networks with supremums. Neurocomputing 214, 739–749 (2016)CrossRefGoogle Scholar
  11. 11.
    Dharania, S., Rakkiyappana, R., Park, J.H.: Pinning sampled-data synchronization of coupled inertial neural networks with reaction–diffusion terms and time-varying delays. Neurocomputing 227, 101–107 (2017)CrossRefGoogle Scholar
  12. 12.
    Rakkiyappan, R., Premalatha, S., Chandrasekar, A., Cao, J.D.: Stability and synchronization analysis of inertial memristive neural networks with time delays. Cognit. Neurodyn. 10(5), 437–451 (2016)CrossRefGoogle Scholar
  13. 13.
    Lee, T.H., Park, J.H.: Improved criteria for sampled-data synchronization of chaotic Lur’e systems using two new approaches. Nonlinear Anal. Hybird Syst. 24, 132–145 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, X.S., Feng, Z.G., Feng, J.W., Cao, J.D.: Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information. Neural Netw. 85, 157–164 (2017)CrossRefGoogle Scholar
  15. 15.
    Zheng, C.D., Xian, Y.J.: Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information. Neurocomputing 216, 570–586 (2016)CrossRefGoogle Scholar
  16. 16.
    Rakkiyappan, R., Preethi Latha, V., Zhu, Q.X., Yao, Z.S.: Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators. Nonlinear Anal. Hybird Syst. 24, 28–44 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, G.B., Wang, T., Li, T., Fei, S.M.: Exponential synchronization for delayed chaotic neural networks with nonlinear hybird coupling. Neurocomputing 85, 53–61 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhang, R.M., Zeng, D.Q., Zhong, S.M.: Novel master–slave synchronization criteria of chaotic Lur’e system with time delays using sampled-data control. J. Frankl. Inst. 354, 4930–4954 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Que, H.Y., Wu, Z.G., Su, H.Y.: Globally exponential synchronization for dynamical networks with discrete-time communications. J. Frankl. Inst. 354(17), 7871–7884 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, X.D., Ding, C.M., Zhu, Q.X.: Synchronization of stochastic perturbed chaotic neural networks with mixed delays. J. Frankl. Inst. 347(7), 1266–1280 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, X.D., Rakkiyappan, R.: Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1515–1523 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, X.D., Song, S.J.: Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3892–3900 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li, X.D., Fu, X.L.: Synchronization of chaotic delayed neural networks with impulsive and stochastic perturbations. Commun. Nonlinear Sci. Numer. Simul. 16(2), 885–894 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Park, M.J., Kwon, O.M., Park, H.H., Lee, S.M., Cha, E.J.: Synchronization criteria for coupled stochastic neural networks with time-varying delays and leakage delay. J. Frankl. Inst. 349(5), 1699–1720 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Park, M.J., Kwon, O.M., Park, J.H., Lee, S.M., Cha, E.J.: On synchronization criterion for coupled discrete-time neural networks with interval time-varying delays. Neurocomputing 99, 188–196 (2013)CrossRefGoogle Scholar
  26. 26.
    Ahn, C.K.: Anti-synchronization of time-delayed chaotic neural networks based on adaptive control. Int. J. Theor. Phys. 48, 3498 (2009)CrossRefGoogle Scholar
  27. 27.
    Suo, J.H., Sun, J.T., Zhang, Y.: Stability analysis for impulsive coupled system on networks. Neurocomputing 99, 172–177 (2013)CrossRefGoogle Scholar
  28. 28.
    Li, Y., Li, C.D.: Matrix measure strategies for stabilization and synchronization of delayed BAM neural networks. Nonlinear Dyn. 84, 1759–1770 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Xing, Z.W., Peng, J.G.: Exponential lag synchronization of fuzzy cellular neural networks with time-varying delays. J. Frankl. Inst. 349, 1074–1086 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Bao, H.B., Park, J.H., Cao, J.D.: Matrix measure strategies for synchronization and anti-synchronization of memristor-based neural networks with time varying delays. Appl. Math. Comput. 270, 543–556 (2015)MathSciNetGoogle Scholar
  31. 31.
    Kazemy, A.: Global synchronization of neural networks with hybird coupling: a delay interval segmentation approach. Neural Comput. Appl. 30(2), 627–637 (2018)CrossRefGoogle Scholar
  32. 32.
    Mazurov, M.E.: Synchronization of relaxational self-oscillatory system: system in neural networks. Bull. Russ. Acad. Sci. Phys. 82(1), 73–77 (2018)CrossRefGoogle Scholar
  33. 33.
    Wang, H.M., Duan, S.K., Huang, T.W., Tan, J.: Synchronization of memristive delayed neural networks via hybrid impulsive control. Neurocomputing 267, 615–623 (2017)CrossRefGoogle Scholar
  34. 34.
    Li, X.F., Fang, J.A., Li, H.Y.: Exponential adaptive synchronization of stochastic memristive chaotic recurrent neural networks with time-varying delays. Neurocomputing 267, 396–405 (2017)CrossRefGoogle Scholar
  35. 35.
    Zhang, Z.Q., Li, A.L., Yang, L.: Global asymptotic periodic synchronization for delayed complex-valued BAM neural networks via vector-valued inequality techniques. Neural Process. Lett. 48(2), 10190–1041 (2018)Google Scholar
  36. 36.
    Cao, Y.T., Wen, S.P., Huang, T.W.: New criteria on exponential lag synchronization of switching neural networks with time-varying delays. Neural Process. Lett. 46(2), 451–466 (2017)CrossRefGoogle Scholar
  37. 37.
    Song, Y.F., Wen, S.P.: Synchronization control of stochastic memristor-based neural networks with mixed delays. Neurocomputing 156, 121–128 (2015)CrossRefGoogle Scholar
  38. 38.
    Zarefard, M., Effati, S.: Adaptive synchronization between two non-identical BAM neural networks with unknown parameters and time-varying delays. Int. J. Control Autom. Syst. 15(4), 1877–1887 (2017)CrossRefGoogle Scholar
  39. 39.
    Guo, Z.Y., Yang, S.F., Wang, J.: Global synchronization of memristive neural networks subject to random disturbances via distributed pinning control. Neural Netw. 84, 67–79 (2016)CrossRefGoogle Scholar
  40. 40.
    Zhang, C.L., Ding, F.Q., Zhao, X.Y., Zhang, B.: p-th exponential synchronization of Cohen–Grossberg neural networks with mixed time varying delays and unknown parameters using impulsive control method. Neurocomputing 218, 432–438 (2016)CrossRefGoogle Scholar
  41. 41.
    Wang, M., Teng, J.F., Liu, E.I.: Global exponential synchronization of delayed BAM neural networks. J. Netw. 9(5), 1354–1360 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Mathematics and EconometricsHunan UniversityChangshaChina

Personalised recommendations