Advertisement

Nonlinear Dynamics

, Volume 95, Issue 1, pp 809–822 | Cite as

Numerical solution of fractional-order time-varying delayed differential systems using Lagrange interpolation

  • Hu Wang
  • Yajuan Gu
  • Yongguang YuEmail author
Original Paper
  • 231 Downloads

Abstract

In this paper, a numerical solution of fractional-order time-varying delayed differential systems using Lagrange interpolation is investigated. Based on Lagrange interpolation method, the Adams–Bashforth–Moulton algorithm has been extended to solve fractional-order time-varying delayed differential systems. Furthermore, a detailed error analysis of this algorithm is presented. A fractional-order time-varying delayed Hopfield neural network as numerical example is given. In addition, the different parameters in the fractional-order time-varying delayed neural network are considered. Finally, some simple and direct numerical methods which are compared with Lagrange interpolation method in the fractional-order time-varying delayed neural network are discussed. The example with numerical simulation clearly illustrated that the present method is reliable.

Keywords

Numerical solution Fractional-order Time-varying delayed differential systems Lagrange interpolation 

Notes

Compliance with ethical standards

Conflict of interest

We declare that there are no conflicts of interest.

References

  1. 1.
    Engheia, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 39, 35–46 (1997)CrossRefGoogle Scholar
  2. 2.
    Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode processes. J. Electroanal. Chem. 33, 253–265 (1971)CrossRefGoogle Scholar
  3. 3.
    Mainardi, F.: Fractional relaxation-oscillation and fractional phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Heymans, N., Bauwens, J.C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33, 210–219 (1994)CrossRefGoogle Scholar
  5. 5.
    Sugimoto, N.: Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cottone, G., Paola, M.D., Santoro, R.: A novel exact representation of stationary colored Gaussian processes (fractional differential approach). J. Phys. A Math. Theor. 43, 085002 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Inc, M.: The approximate and exact solutions of the space-and time-fractional Burger’s equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    He, J.H.: A short remark on fractional variational iteration method. Phys. Lett. A 375(38), 3362–3364 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Yin, X.C., Zhou, J., Hu, B.: Finite difference approximations for a fractional advection–dispersion equation. J. Comput. Appl. Math. 172(1), 65–77 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, S., Yu, Y.G., Diao, M.: Application of multistage homotopy-perturbation method in hybrid synchronization of chaotic systems. Int. J. Comput. Math. 87, 3007–3016 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hashim, I., Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 14, 674–684 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jafari, H., Daftardar-Gejji, V.: Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 180, 488–497 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Khader, M.M.: On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 16, 2535–2542 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ma, X.H., Huang, C.G.: Numerical solution of fractional integro-differential equations by a hybrid collocation method. Appl. Math. Comput. 219(12), 6750–6760 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176, 1–6 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Neville, J., Ford, A., Charles, S.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Najafalizadeh, S., Ezzati, R.: A block pulse operational matrix method for solving two-dimensional nonlinear integro-differential equations of fractional order. J. Comput. Appl. Math. 326(15), 159–170 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Chen, Y.Q., Gao, Q., Wei, Y.H.: Study on fractional order gradient methods. Appl. Math. Comput. 314, 310–321 (2017)MathSciNetGoogle Scholar
  21. 21.
    Zhao, F.Q., Huang, Q.X., Xie, J.Q.: Chebyshev polynomials approach for numerically solving system of two-dimensional fractional PDEs and convergence analysis. Appl. Math. Comput. 313, 321–330 (2017)MathSciNetGoogle Scholar
  22. 22.
    Zaky, M.A., Machado, J.A.T.: On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 52, 177–189 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rehman, M.U., Idrees, A., Saeed, U.: A quadrature method for numerical solutions of fractional differential equations. Appl. Math. Comput. 307, 38–49 (2017)MathSciNetGoogle Scholar
  24. 24.
    Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hwang, C., Cheng, Y.: A numerical algorithm for stability testing of fractional delay systems. Automatica 42, 825–831 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Bhalekar, S., Varsha, D.: A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1(5), 1–9 (2011)Google Scholar
  27. 27.
    Kaslik, E., Sivasundaram, S.: Analytical and numerical methods for the stability analysis of linear fractional delay differential equations. J. Comput. Appl. Math. 236, 4027–4040 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Morgadoa, M.L., Ford, N.J., Lima, P.M.: Analysis and numerical methods for fractional differential equations with delay. J. Comput. Appl. Math. 252, 159–168 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chen, B., Chen, J.: Global O(\(t^{-\alpha }\)) stability and global asymptotical periodicity for a non-autonomous fractional-order neural networks with time-varying delays. Neural Netw. 73, 47–57 (2016)zbMATHGoogle Scholar
  30. 30.
    Shen, J., Lam, J.: Stability and performance analysis for positive fractional-order systems with time-varying delays. IEEE Trans. Autom. Control 61(9), 2676–2681 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Stamova, I., Stamov, G.: Mittag–Leffler synchronization of fractional neural networks with time-varying delays and reaction–diffusion terms using impulsive and linear controllers. Neural Netw. 96, 22–32 (2017)CrossRefGoogle Scholar
  32. 32.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  33. 33.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Statistics and MathematicsCentral University of Finance and EconomicsBeijingChina
  2. 2.Department of MathematicsBeijing Jiaotong UniversityBeijingChina

Personalised recommendations