Nonlinear Dynamics

, Volume 95, Issue 1, pp 699–714 | Cite as

The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass

  • Ivan A. Bizyaev
  • Alexey V. Borisov
  • Sergey P. KuznetsovEmail author
Original Paper


For a Chaplygin sleigh moving in the presence of weak friction, we present and investigate two mechanisms of arising acceleration due to oscillations of an internal mass. In certain parameter regions, the mechanism induced by small oscillations determines acceleration which is on average one-directional. The role of friction is that the velocity reached in the process of the acceleration is stabilized at a certain level. The second mechanism is due to the effect of the developing oscillatory parametric instability in the motion of the sleigh. It occurs when the internal oscillating particle is comparable in mass with the main platform and the oscillations are of a sufficiently large amplitude. In the nonholonomic model the magnitude of the parametric oscillations and the level of mean energy achieved by the system turn out to be bounded if the line of the oscillations of the moving particle is displaced from the center of mass; the observed sustained motion is in many cases associated with a chaotic attractor. Then, the motion of the sleigh appears to be similar to the process of two-dimensional random walk on the plane.


Nonholonomic mechanics Chaplygin sleigh Parametric oscillator Strange attractor Lyapunov exponent Chaotic dynamics 



This work was supported by Grant No. 15-12-20035 of the Russian Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Goldstein, H., Poole Jr., ChP, Safko, J.L.: Classical Mechanics, 3rd edn. Addison-Wesley, Boston (2001)zbMATHGoogle Scholar
  2. 2.
    Gantmacher, F.R.: Lectures in Analytical Mechanics. Mir, Moscow (1975)Google Scholar
  3. 3.
    Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. American Mathematical Society, Providence (2004)CrossRefGoogle Scholar
  4. 4.
    Borisov, A.V., Mamaev, I.S., Bizyaev, I.A.: Historical and critical review of the development of nonholonomic mechanics: the classical period. Regul. Chaotic Dyn. 21(4), 455–476 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Borisov, A.V., Mamaev, I.S.: Rigid Body Dynamics. RCD, Izhevsk (2001). (In Russian) zbMATHGoogle Scholar
  6. 6.
    Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2015)CrossRefGoogle Scholar
  7. 7.
    Borisov, A.V., Mamaev, I.S., Bizyaev, I.A.: Historical and critical review of the development of nonholonomic mechanics: the classical period. Regul. Chaotic Dyn. 21(4), 455–476 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Li, Z., Canny, J.F. (eds.): Nonholonomic Motion Planning. Springer, Berlin (2012)Google Scholar
  9. 9.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robotics Autom. 16(5), 609–615 (2000)CrossRefGoogle Scholar
  10. 10.
    Alves, J., Dias, J.: Design and control of a spherical mobile robot. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 217(6), 457–467 (2003)CrossRefGoogle Scholar
  11. 11.
    Borisov, A.V., Kilin, A.A., Mamaev, I.S.: How to control Chaplygin’s sphere using rotors. Regul. Chaotic Dyn. 17(3), 258–272 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Borisov, A.V., Mamaev, I.S.: Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems. Regul. Chaotic Dyn. 13(5), 443–490 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Borisov, A.V., Mamaev, I.S.: Strange attractors in rattleback dynamics. Phys. Uspekhi 46(4), 393–403 (2003)CrossRefGoogle Scholar
  14. 14.
    Borisov, A.V., Kazakov, A.O., Kuznetsov, S.P.: Nonlinear dynamics of the rattleback: a nonholonomic model. Phys. Uspekhi 57(5), 453–460 (2014)CrossRefGoogle Scholar
  15. 15.
    Borisov, A.V., Jalnine, A.Y., Kuznetsov, S.P., Sataev, I.R., Sedova, J.V.: Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback. Regul. Chaotic Dyn. 17(6), 512–532 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Chaplygin, S.A.: On the theory of motion of nonholonomic systems. The reducing-multiplier theorem. Regul. Chaotic Dyn. 13(4), 369–376 (2008). (see also: Mat. Sb., 28(2), 303-314 (1912)) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Caratheodory, C.: Der schlitten. Z. Angew. Math. Mech. 13(2), 71–76 (1933)zbMATHCrossRefGoogle Scholar
  18. 18.
    Borisov, A.V., Kilin, A.A., Mamaev, I.S.: On the Hadamard–Hamel problem and the dynamics of wheeled vehicles. Regul. Chaotic Dyn. 20(6), 752–766 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Borisov, A.V., Mamaev, I.S.: The dynamics of a Chaplygin sleigh. J. Appl. Math. Mech. 73(2), 156–161 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Borisov, A.V., Kuznetsov, S.P.: Regular and chaotic motions of a Chaplygin Sleigh under periodic pulsed torque impacts. Regul. Chaotic Dyn. 21(7–8), 792–803 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Tallapragada, P., Fedonyuk, V.: Steering a Chaplygin sleigh using periodic impulses. J. Comput. Nonlinear Dyn. 12(5), 054501 (2017)CrossRefGoogle Scholar
  22. 22.
    Fedonyuk, V., Tallapragada, P.: The dynamics of a two link Chaplygin sleigh driven by an internal momentum wheel. In: American Control Conference (ACC), pp. 2171–2175. IEEE (2017)Google Scholar
  23. 23.
    Kuznetsov, S.P.: Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint. Europhys. Lett. 118(1), 10007 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kuznetsov, S.P.: Regular and chaotic dynamics of a Chaplygin Sleigh due to periodic switch of the nonholonomic constraint. Regul. Chaotic Dyn. 23(2), 178–192 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Bizyaev, I.A., Borisov, A.V., Mamaev, I.S.: The Chaplygin Sleigh with parametric excitation: chaotic dynamics and nonholonomic acceleration. Regul. Chaotic Dyn. 22(8), 957–977 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Bizyaev, I.A., Borisov, A.V., Kuznetsov, S.P.: Chaplygin sleigh with periodically oscillating internal mass. Europhys. Lett. 119(6), 60008 (2017)CrossRefGoogle Scholar
  27. 27.
    Fedonyuk, V., Tallapragada, P.: Sinusoidal control and limit cycle analysis of the dissipative Chaplygin sleigh. Nonlinear Dyn. 93(2), 835–846 (2018)zbMATHCrossRefGoogle Scholar
  28. 28.
    Jung, P., Marchegiani, G., Marchesoni, F.: Nonholonomic diffusion of a stochastic sled. Phys. Rev. E 93(1), 012606 (2016)CrossRefGoogle Scholar
  29. 29.
    Halme, A., Schonberg, T., Wang, Y.: Motion control of a spherical mobile robot. In: Proceedings of the 4th International Workshop on Advanced Motion Control, pp. 259–264. IEEE (1996)Google Scholar
  30. 30.
    Borisov, A.V., Kilin, A.A., Mamaev, I.S.: How to control Chaplygin’s sphere using rotors. Regul. Chaotic Dyn. 17(3), 258–272 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Pollard, B., Tallapragada, P.: An aquatic robot propelled by an internal rotor. IEEE/ASME Trans. Mechatron. 22(2), 931–939 (2017)CrossRefGoogle Scholar
  32. 32.
    Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75(8), 1169–1174 (1949)zbMATHCrossRefGoogle Scholar
  33. 33.
    Lichtenberg, A.J., Lieberman, M.A., Cohen, R.H.: Fermi acceleration revisited. Phys. D Nonlinear Phenom. 1(3), 291–305 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Rabinovich, M.I., Trubetskov, D.I.: Oscillations and Waves: In Linear and Nonlinear Systems. Springer, Berlin (1989)zbMATHCrossRefGoogle Scholar
  35. 35.
    Akhmanov, S.A., Khokhlov, R.V.: Parametric amplifiers and generators of light. Phys. Uspekhi 9(2), 210–222 (1966)CrossRefGoogle Scholar
  36. 36.
    Nikolov, D.V.: Nonlinear and Parametric Phenomena: Theory and Applications in Radiophysical and Mechanical Systems. World Scientific, Singapore (2004)Google Scholar
  37. 37.
    Yudovich, V.I.: The dynamics of vibrations in systems with constraints. Phys. Doklady 42, 322–325 (1997)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Champneys, A.: Dynamics of parametric excitation. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 2323–2345. Springer, New York (2009)CrossRefGoogle Scholar
  39. 39.
    Fedonyuk, V., Tallapragada, P.: Stick-slip motion of the Chaplygin Sleigh with Piecewise-Smooth nonholonomic constraint. J. Comput. Nonlinear Dyn. 12(3), 031021 (2017)CrossRefGoogle Scholar
  40. 40.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, New York (1968)zbMATHGoogle Scholar
  41. 41.
    Rytov, S.M., Kravtsov, Y.A., Tatarskii, V.I.: Principles of Statistical Radiophysics. 1. Elements of Random Process Theory. Springer, Berlin (1987)zbMATHGoogle Scholar
  42. 42.
    Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. CRC Press, Boca Raton (1973)Google Scholar
  43. 43.
    Schöll, E., Schuster, H.G. (eds.): Handbook of Chaos Control. Wiley, New York (2008)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Udmurt State UniversityIzhevskRussian Federation
  2. 2.Kotel’nikov’s Institute of Radio-Engineering and Electronics of RASSaratovRussian Federation

Personalised recommendations