Advertisement

Nonlinear Dynamics

, Volume 95, Issue 1, pp 617–629 | Cite as

The complexity–entropy causality plane based on multivariate multiscale distribution entropy of traffic time series

  • Yali ZhangEmail author
  • Pengjian Shang
Original Paper
  • 118 Downloads

Abstract

The complexity of time series has become a necessary condition to explain nonlinear dynamic systems. We propose multivariate multiscale distribution entropy (MMSDE). Based on this method, this paper evaluates the complexity of traffic system with complexity-entropy causality plane (CEPE). The distribution entropy makes full use of the distance between vectors in the state space and calculates the probability density information to estimate the complexity of the system. And MMSDE can quantify the complexity of multivariable time series from multiple time scales. We test the performance of this method with simulated data. The results show that CEPE based on MMSDE is less dependent on parameters. The complex entropy plane method proposed here has strong anti-interference ability and strong robustness.

Keywords

Complexity-entropy causality plane Multivariate multiscale distribution entropy Simulated data Traffic time series 

Notes

Acknowledgements

The financial supports from the Fundamental Research Funds for the Central Universities (2017YJS199) and the funds of the China National Science (61771035,61371130) and the Beijing National Science (4162047) are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bai, M.Y., Zhu, H.B.: Power law and multiscaling properties of the Chinese stock market. Phys. A Stat. Mech. Appl. 389(9), 1883–1890 (2010)CrossRefGoogle Scholar
  2. 2.
    Chang, G.L., Mahmassani, H.S.: Travel time prediction and departure time adjustment behavior dynamics in a congested traffic system. Transp. Res. Part B 22(3), 217–232 (2008)CrossRefGoogle Scholar
  3. 3.
    Chowdhury, D., Schadschneider, A., Katsuhiro N.: Traffic phenomena in biology: from molecular motors to organisms (2007)Google Scholar
  4. 4.
    Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gasser, I., Sirito, G., Werner, B.: Bifurcation analysis of a class of car following traffic models. Phys. D Nonlinear Phenom. 197(3), 222–241 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Grayling, A.C.: The physics of traffic. New Sci. 197(2638), 48–48 (2008)CrossRefGoogle Scholar
  7. 7.
    Nishinari, K., Treiber, M., Helbing, D.: Interpreting the wide scattering of synchronized traffic data by time gap statistics. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(62), 067101 (2003)CrossRefGoogle Scholar
  8. 8.
    Shang, P., Li, X., Kamae, S.: Chaotic analysis of traffic time series. Chaos Solitons Fractals 25(1), 121–128 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Shang, P., Li, X., Kamae, S.: Nonlinear analysis of traffic time series at different temporal scales. Phys. Lett. A 357(45), 314–318 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)CrossRefGoogle Scholar
  11. 11.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(1), 021906 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)CrossRefGoogle Scholar
  13. 13.
    Parzen, E.: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability: volume II, contributions to probability theory. University of California Press 2(12), 279–280 (1961)Google Scholar
  14. 14.
    Pincus, S., Singer, B.H.: Randomness and degrees of irregularity. Proc. Natl. Acad. Sci. USA 93(5), 2083 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Richman, J.S., Moorman, J.R.: Physiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039 (2000)CrossRefGoogle Scholar
  16. 16.
    JRycroft, M.: Nonlinear time series analysis. J. Atmos. Solar Terr. Phys. 62(2), 152–152 (2000)Google Scholar
  17. 17.
    Zhou, S., Zhou, L., Liu, S., Sun, P., Luo, Q., Junke, W.: The application of approximate entropy theory in defects detecting of IGBT module. Active Passive Electron. Compon. 882–7516, 2014 (2012)Google Scholar
  18. 18.
    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 9(1), 189–208 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185(1), 77–87 (1994)CrossRefGoogle Scholar
  20. 20.
    Shi, K., Zhu, H., Zhong, S.: Improved delay-dependent stability criteria for neural networks with discrete and distributed time-varying delays using a delay-partitioning approach. Nonlinear Dyn. 79(1), 575–592 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 49(2), 1685 (1994)Google Scholar
  22. 22.
    Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1), 82 (1995)CrossRefGoogle Scholar
  23. 23.
    Shi, K., Zhu, H., Zhong, S.: New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach. J. Frankl. Inst. 352(1), 155–176 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Martin, M.T., Plastino, A., Rosso, O.A.: Generalized statistical complexity measures: geometrical and analytical properties. Phys. A Stat. Mech. Appl. 369(2), 439–462 (2006)CrossRefGoogle Scholar
  25. 25.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput. Cardiol. 29(29), 137 (2002)CrossRefGoogle Scholar
  26. 26.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput. Cardiol. 29, 137–140 (2002)CrossRefGoogle Scholar
  27. 27.
    Costa, M., Peng, C.K., Goldberger, A.L., Hausdorff, J.M.: Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Appl. 330(12), 53–60 (2003)zbMATHCrossRefGoogle Scholar
  28. 28.
    Costa, M., Goldberger, A.L., Peng, C.K.: Costa, Goldberger, and Peng reply. Phys. Rev. Lett. 92(8), 089804 (2004)CrossRefGoogle Scholar
  29. 29.
    Thuraisingham, R.A., Gottwald, G.A.: On multiscale entropy analysis for physiological data. Phys. A Stat. Mech. Appl. 366(1), 323–332 (2006)CrossRefGoogle Scholar
  30. 30.
    Peng, L., Liu, C., Ke, L., Zheng, D., Liu, C., Hou, Y.: Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med. Biol. Eng. Comput. 53(1), 77–87 (2015)CrossRefGoogle Scholar
  31. 31.
    Huo, C., Huang, X., Zhuang, J., Hou, F., Ni, H., Ning, X.: Quadrantal multiscale distribution entropy analysis of heartbeat interval series based on a modified Poincare plot. Phys. A Stat. Mech. Appl. 392(17), 3601–3609 (2013)zbMATHCrossRefGoogle Scholar
  32. 32.
    Li, P., Karmakar, C., Yan, C., Palaniswami, M., Liu, C.: Supplementary information for classification of 5-S epileptic EEG recordings using distribution entropy and sample entropy. Phys. A Stat. Mech. Appl. 92(13), 2565–2590 (2016)Google Scholar
  33. 33.
    Li, P., Li, K., Liu, C., Zheng, D., Li, Z.M., Liu, C.: Detection of coupling in short physiological series by a joint distribution entropy method. IEEE Trans. Biomed. Eng. 63(11), 2231–2242 (2016)CrossRefGoogle Scholar
  34. 34.
    Li, Y., Li, P., Karmakar, C., Liu, C.: Distribution entropy for short-term qt interval variability analysis: a comparison between the heart failure and normal control groups. Comput. Cardiol. Conf. 33(2), 389–393 (2016)Google Scholar
  35. 35.
    Peng, L., Karmakar, C., Chang, Y., Palaniswami, M., Liu, C.: Classification of 5-S epileptic EEG recordings using distribution entropy and sample entropy. Front. Physiol. 7(66), 136 (2016)Google Scholar
  36. 36.
    Ahmed, M.U., Mandic, D.P.: Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(6 Pt1), 061918 (2011)CrossRefGoogle Scholar
  37. 37.
    Ahmed, M.U., Mandic, D.P.: Multivariate multiscale entropy analysis. IEEE Signal Process. Lett. 19(2), 91–94 (2012)CrossRefGoogle Scholar
  38. 38.
    Rosso, O.A., Larrondo, H.A., Martin, M.T., Plastino, A., Fuentes, M.A.: Distinguishing noise from chaos. Phys. Rev. Lett. 99(15), 154102 (2007)CrossRefGoogle Scholar
  39. 39.
    Zunino, L., Ribeiro, H.V.: Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane. Chaos Solitons Fractals 91, 679–688 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zunino, L., Zanin, M., Tabak, B.M., Rosso, O.A.: Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency. Phys. A Stat. Mech. Appl. 389(9), 1891–1901 (2010)CrossRefGoogle Scholar
  41. 41.
    Albano, A.M., Muench, J., Schwartz, C.: Singular-value decomposition and the Grassberger–Procaccia algorithm. Phys. Rev. A Gen. Phys. 38(6), 3017–3026 (1988)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rosenstein, M.T., Collins, J.J., Luca, C.J.D.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Phys. D Nonlinear Phenom. 73(94), 82–98 (1994)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Cao, L., Mees, A., Judd, K.: Dynamics from multivariate time series. Phys. D 121, 75–88 (1998)zbMATHCrossRefGoogle Scholar
  45. 45.
    Li, P., Liu, C., Wang, X., Li, L., Yang, L., Chen, Y., Liu, C.: Testing pattern synchronization in coupled systems through different entropy-based measures. Med. Biol. Eng. Comput. 51(5), 581–591 (2013)CrossRefGoogle Scholar
  46. 46.
    Liu, C., Liu, C., Shao, P., Li, L., Sun, X., Wang, X., Liu, F.: Comparison of different threshold values R for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 32(2), 167–180 (2011)CrossRefGoogle Scholar
  47. 47.
    Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. 88(6), 2297–2301 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of ScienceBeijing Jiaotong UniversityBeijingPeople’s Republic of China

Personalised recommendations