Advertisement

Nonlinear Dynamics

, Volume 95, Issue 1, pp 293–308 | Cite as

Reliability function determination of nonlinear oscillators under evolutionary stochastic excitation via a Galerkin projection technique

  • H. Vanvinckenroye
  • I. A. Kougioumtzoglou
  • V. DenoëlEmail author
Original Paper
  • 124 Downloads

Abstract

An approximate semi-analytical technique is developed for determining the response first-passage time probability density function of a class of lightly damped nonlinear oscillators subject to evolutionary stochastic excitation. Specifically, relying on a Markovian approximation of the response energy envelope, and on a stochastic averaging treatment, yields a backward Kolmogorov equation governing the evolution in time of the oscillator reliability function. Next, the backward Kolmogorov equation is solved by employing an appropriate orthogonal basis in conjunction with a Galerkin projection scheme. It is noted that the technique can account for arbitrary evolutionary excitation forms, even of the non-separable type. The special case of an undamped oscillator, for which relevant analytical results exist in the literature, is also included and studied in detail. Further, Markovian approximation of the potential energy envelope is considered as well. In comparison with the conventional amplitude-based energy envelope formulation, the intermediate step of linearizing the nonlinear stiffness element is circumvented, thus reducing the overall approximation degree of the technique. An additional significant advantage of the potential energy envelope formulation relates to the fact that its degree of accuracy appears rather insensitive to the nonlinearity magnitude (at least in the considered examples). Pertinent Monte Carlo simulation data are included in the numerical examples as well for assessing the accuracy of the technique.

Keywords

Galerkin scheme Reliability assessment First-passage time Nonlinear oscillator Evolutionary excitation Backward Kolmogorov equation 

Notes

Acknowledgements

H. Vanvinckenroye was supported by the National Fund for Scientific Research of Belgium. This research has been conducted during a visit of H. Vanvinckenroye at Columbia University

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vanvinckenroye, H., Andrianne, T., Denoël, V.: First passage time as an analysis tool in experimental wind engineering. J. Wind Eng. Ind. Aerodyn. 177, 366–375 (2018)CrossRefGoogle Scholar
  2. 2.
    Tominaga, Y., Stathopoulos, T.: CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modeling techniques. Atmos. Environ. 79, 716–730 (2013)CrossRefGoogle Scholar
  3. 3.
    Andrianne, T., de Ville de Goyet, V.: Mitigation of the torsional flutter phenomenon of bridge deck section during a lifting phase. In: 8th International Colloquium on Bluff Body Aerodynamics and Applications, Northeastern University, Boston, Massachusetts, USA (2016)Google Scholar
  4. 4.
    Schuss, Z.: Theory and Applications of Stochastic Processes, Vol. 170 of Applied Mathematical Sciences. Springer, New York (2010)CrossRefGoogle Scholar
  5. 5.
    Preumont, A.: Random Vibration and Spectral Analysis. Kluwer Academic Publishers, Dordrecht (1994)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bergman, L.A., Heinrich, J.C.: On the moments of time to first passage of the linear oscillator. Earthq. Eng. Struct. Dyn. 9(3), 197–204 (1981)CrossRefGoogle Scholar
  7. 7.
    Vanvinckenroye, H., Denoël, V.: Average first-passage time of a quasi-Hamiltonian Mathieu oscillator with parametric and forcing excitations. J. Sound Vib. 406, 328–345 (2017)CrossRefGoogle Scholar
  8. 8.
    Vanvinckenroye, H., Denoël, V.: Second-order moment of the first passage time of a quasi-Hamiltonian oscillator with stochastic parametric and forcing excitations. J. Sound Vib. 427, 178–187 (2018)CrossRefGoogle Scholar
  9. 9.
    Lin, Y.K.Y.-K.: Probabilistic Theory of Structural Dynamics. R.E. Krieger Pub. Co, Malabar (1976)Google Scholar
  10. 10.
    Crandall, S.: First-crossing probabilities of the linear oscillator. J. Sound Vib. 12(3), 285–299 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Yang, J., Shinozuka, M.: First-passage time problem. J. Acoust. Soc. Am. 47(1B), 393–394 (1970)CrossRefGoogle Scholar
  12. 12.
    Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications-Fifth Edition, pp. 1–5 (2003)Google Scholar
  13. 13.
    Kovaleva, A.: An exact solution of the first-exit time problem for a class of structural systems. Probab. Eng. Mech. 24(3), 463–466 (2009)CrossRefGoogle Scholar
  14. 14.
    Naess, A., Gaidai, O.: Monte Carlo methods for estimating the extreme response of dynamical systems. J. Eng. Mech. 134(8), 628–636 (2008)CrossRefGoogle Scholar
  15. 15.
    Au, S.-K., Wang, Y.: Engineering risk assessment and design with subset simulation (2014)Google Scholar
  16. 16.
    Grigoriu, M.: Stochastic Calculus: Applications in Science and Engineering. Springer, Birkhäuser (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kougioumtzoglou, I.A., Zhang, Y., Beer, M.: Softening Duffing Oscillator Reliability assessment subject to evolutionary stochastic excitation. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2(2), C4015001 (2016)CrossRefGoogle Scholar
  18. 18.
    Vanmarcke, E.H.: On the distribution of the first-passage time for normal stationary random processes. J. Appl. Mech. 42(1), 215 (1975)zbMATHCrossRefGoogle Scholar
  19. 19.
    Náprstek, J., Král, R.: Evolutionary analysis of Fokker–Planck equation using multi-dimensional Finite Element Method. Procedia Eng. 199, 735–740 (2017)CrossRefGoogle Scholar
  20. 20.
    Canor, T., Denoël, V.: Transient Fokker–Planck–Kolmogorov equation solved with smoothed particle hydrodynamics method. Int. J. Numer. Methods Eng. 94(6), 535–553 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Coleman, J.J.: Reliability of aircraft structures in resisting chance failure. Oper. Res. 7(5), 639–645 (1959)zbMATHCrossRefGoogle Scholar
  22. 22.
    Kougioumtzoglou, I.A., Spanos, P.D.: Stochastic response analysis of the softening Duffing oscillator and ship capsizing probability determination via a numerical path integral approach. Probab. Eng. Mech. 35, 67–74 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Kougioumtzoglou, I.A.: Nonlinear oscillator stochastic response and survival probability determination via the Wiener path integral. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 1(2), 021005 (2015)CrossRefGoogle Scholar
  24. 24.
    Spanos, P.D., Kougioumtzoglou, I.A.: Galerkin scheme based determination of first-passage probability of nonlinear system response. Struct. Infrastruct. Eng. 10(10), 1285–1294 (2014)CrossRefGoogle Scholar
  25. 25.
    Yurchenko, D., Mo, E., Naess, A.: Reliability of strongly nonlinear single degree of freedom dynamic systems by the path integration method. J. Appl. Mech. 75(6), 061016 (2008)CrossRefGoogle Scholar
  26. 26.
    Li, J., Chen, J.: Stochastic Dynamics of Structures. Wiley, New York (2009)zbMATHCrossRefGoogle Scholar
  27. 27.
    Kougioumtzoglou, I., Spanos, P.: An approximate approach for nonlinear system response determination under evolutionary stochastic excitation. Curr. Sci. 97, 1203–1211 (2009)MathSciNetGoogle Scholar
  28. 28.
    Lin, Y., Cai, G.: Some thoughts on averaging techniques in stochastic dynamics. Probab. Eng. Mech. 15(1), 7–14 (2000)CrossRefGoogle Scholar
  29. 29.
    Red-Horse, J., Spanos, P.: A generalization to stochastic averaging in random vibration. Int. J Non-Linear Mech. 27(1), 85–101 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Roberts, J.J., Spanos, P.P.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear Mech. 21(2), 111–134 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhu, W.Q.: Stochastic averaging methods in random vibration. Appl. Mech. Rev. 41(5), 189 (1988)CrossRefGoogle Scholar
  32. 32.
    Proppe, C., Pradlwarter, H., Schuëller, G.: Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probab. Eng. Mech. 18(1), 1–15 (2003)CrossRefGoogle Scholar
  33. 33.
    Socha, L.: Linearization Methods for Stochastic Dynamic Systems, pp. 1–5. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  34. 34.
    Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Dover Publications, Mineola (2003)zbMATHGoogle Scholar
  35. 35.
    Spanos, P.-T.D.: Numerics for common first-passage problem. J. Eng. Mech. Div. 108(5), 864–882 (1982)Google Scholar
  36. 36.
    Spanos, P.D., Di Matteo, A., Cheng, Y., Pirrotta, A., Li, J.: Galerkin scheme-based determination of survival probability of oscillators with fractional derivative elements. J. Appl. Mech. 83(12), 121003 (2016)CrossRefGoogle Scholar
  37. 37.
    Di Matteo, A., Spanos, P.D., Pirrotta, A.: Approximate survival probability determination of hysteretic systems with fractional derivative elements. Probab. Eng. Mech. 54, 138–146 (2018)CrossRefGoogle Scholar
  38. 38.
    Spanos, P., Solomos, G.P.: Barrier crossing due to transient excitation. J. Eng. Mech. 110(1), 20–36 (1984)CrossRefGoogle Scholar
  39. 39.
    Canor, T., Caracoglia, L., Denoël, V.: Perturbation methods in evolutionary spectral analysis for linear dynamics and equivalent statistical linearization. Probab. Eng. Mech. 46, 1–17 (2016)CrossRefGoogle Scholar
  40. 40.
    Luo, A.C.J., Huang, J.: Analytical period-3 motions to chaos in a hardening Duffing oscillator. Nonlinear Dyn. 73(3), 1905–1932 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Xu, Y., Li, Y., Liu, D., Jia, W., Huang, H.: Responses of Duffing oscillator with fractional damping and random phase. Nonlinear Dyn. 74(3), 745–753 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Spanos, P.D., Red-Horse, J.R.: Nonstationary solution in nonlinear random vibration. J. Eng. Mech. 114(11), 1929–1943 (1988)zbMATHCrossRefGoogle Scholar
  43. 43.
    Spanos, P.D., Kougioumtzoglou, I.A., dos Santos, K.R.M., Beck, A.T.: Stochastic averaging of nonlinear oscillators: Hilbert transform perspective. J. Eng. Mech. 144(2), 04017173 (2018)CrossRefGoogle Scholar
  44. 44.
    Primožič, T.: Estimating expected first passage times using multilevel Monte Carlo algorithm, M.Sc. in Mathematical and Computational Finance UniversityGoogle Scholar
  45. 45.
    Chunbiao, G., Bohou, X.: First-passage time of quasi-non-integrable-Hamiltonian system. Acta Mechanica Sinica 16(2), 183–192 (2000)CrossRefGoogle Scholar
  46. 46.
    Liang, J., Chaudhuri, S.R., Shinozuka, M.: Simulation of nonstationary stochastic processes by spectral representation. J. Eng. Mech. 133(6), 616–627 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Structural Engineering Division, Faculty of Applied SciencesUniversity of LiègeLiègeBelgium
  2. 2.FRIA (F.R.S.-F.N.R.S)National Fund for Scientific ResearchBrusselsBelgium
  3. 3.Department of Civil Engineering and Engineering MechanicsColumbia UniversityNew YorkUSA

Personalised recommendations