Advertisement

Nonlinear Dynamics

, Volume 95, Issue 1, pp 151–174 | Cite as

Nonlinear dynamic responses of rotating pretwisted cylindrical shells

  • Minghui YaoEmail author
  • Yan Niu
  • Yuxin Hao
Original Paper
  • 204 Downloads

Abstract

A rotating pretwisted cylindrical shell model with a presetting angle is established to investigate nonlinear dynamic responses of the aero-engine compressor blade. The centrifugal force and the Coriolis force are considered in the model. The aerodynamic pressure is obtained by the first-order piston theory. The strain–displacement relationship is derived by the Green strain tensor. Based on the first-order shear deformation theory and the isotropic constitutive law, nonlinear partial differential governing equations are derived by using the Hamilton principle. Discarding the Coriolis force effect, Galerkin approach is utilized to reduce nonlinear partial differential governing equations into a two-degree-of-freedom nonlinear system. According to nonlinear ordinary differential equations, numerical simulations are performed to explore nonlinear transient dynamic responses of the system under the effect of the single point excitation and nonlinear steady-state dynamic responses of the system under the effect of the uniform distribution excitation. The effects of the excitation parameter, damping coefficient, rotating speed, presetting angle and pretwist angle on nonlinear dynamic responses of the system are fully discussed.

Keywords

Nonlinear dynamics Pretwisted cylindrical shell Rotating speed Single point excitation Uniform distribution excitation 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant No. 11372015.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Carnegie, W.: Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods. J. Mech. Eng. Sci. 1(3), 235–240 (1959)zbMATHCrossRefGoogle Scholar
  2. 2.
    Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending–bending vibrations of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method. Int. J. Mech. Sci. 23(9), 517–530 (1981)zbMATHCrossRefGoogle Scholar
  3. 3.
    Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending–torsion vibrations of rotating blades of asymmetric aerofoil cross section with allowance for shear deflection and rotary inertia by use of the Reissner method. J. Sound Vib. 75(1), 17–36 (1981)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, L.W., Chen, C.L.: Vibration and stability of cracked thick rotating blades. Comput. Struct. 28(1), 67–74 (1988)CrossRefGoogle Scholar
  5. 5.
    Song, O., Librescu, L.: Structural modeling and free vibration analysis of rotating composite thin-walled beams. J. Am. Helicopter Soc. 42(4), 358–369 (1997)CrossRefGoogle Scholar
  6. 6.
    Chandiramani, N.K., Librescu, L., Shete, C.D.: On the free-vibration of rotating composite beams using a higher-order shear formulation. Aerosp. Sci. Technol. 6(8), 545–561 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Oh, S.Y., Song, O., Librescu, L.: Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams. Int. J. Solids Struct. 40(5), 1203–1224 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fazelzadeh, S.A., Malekzadeh, P., Zahedinejad, P., Hosseini, M.: Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method. J. Sound Vib. 306(1–2), 333–348 (2007)CrossRefGoogle Scholar
  9. 9.
    Saravia, C.M., Machado, S.P., Cortínez, V.H.: Free vibration and dynamic stability of rotating thin-walled composite beams. Eur. J. Mech. A/Solids 30(3), 432–441 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Oh, Y., Yoo, H.H.: Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials. Int. J. Mech. Sci. 119, 68–79 (2016)CrossRefGoogle Scholar
  11. 11.
    Ding, H., Chen, L.Q.: Natural frequencies of nonlinear vibration of axially moving beams. Nonlinear Dyn. 63(1–2), 125–134 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ding, H., Zhu, M.H., Zhang, Z., Zhang, Y.W., Chen, L.Q.: Free vibration of a rotating ring on an elastic foundation. Int. J. Appl. Mech. 9(4), 1750051 (2017)CrossRefGoogle Scholar
  13. 13.
    Wang, F.X., Zhang, W.: Stability analysis of a nonlinear rotating blade with torsional vibrations. J. Sound Vib. 331(26), 5755–5773 (2012)CrossRefGoogle Scholar
  14. 14.
    Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68(4), 487–504 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yao, M.H., Zhang, W., Chen, Y.P.: Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech. 225(12), 3483–3510 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Sreenivasamurthy, S., Ramamurti, V.: A parametric study of vibration of rotating pre-twisted and tapered low aspect ratio cantilever plates. J. Sound Vib. 76(3), 311–328 (1981)CrossRefGoogle Scholar
  17. 17.
    Ramamurti, V., Kielb, R.: Natural frequencies of twisted rotating plates. J. Sound Vib. 97(3), 429–449 (1984)CrossRefGoogle Scholar
  18. 18.
    Qatu, M.S., Leissa, A.W.: Vibration studies for laminated composite twisted cantilever plates. Int. J. Mech. Sci. 33(11), 927–940 (1991)CrossRefGoogle Scholar
  19. 19.
    Yoo, H.H., Kwak, J.Y., Chung, J.: Vibration analysis of rotating pre-twisted blades with a concentrated mass. J. Sound Vib. 240(5), 891–908 (2001)CrossRefGoogle Scholar
  20. 20.
    Yoo, H.H., Kim, S.K.: Free vibration analysis of rotating cantilever plates. AIAA J. 40(11), 2188–2196 (2002)CrossRefGoogle Scholar
  21. 21.
    Yoo, H.H., Kim, S.K., Inman, D.J.: Modal analysis of rotating composite cantilever plates. J. Sound Vib. 258(2), 233–246 (2002)CrossRefGoogle Scholar
  22. 22.
    Hashemi, S.H., Farhadi, S., Carra, S.: Free vibration analysis of rotating thick plates. J. Sound Vib. 323, 366–384 (2009)CrossRefGoogle Scholar
  23. 23.
    Farhadi, S., Hashemi, S.H.: Aeroelastic behavior of cantilevered rotating rectangular plates. Int. J. Mech. Sci. 53(4), 316–328 (2011)CrossRefGoogle Scholar
  24. 24.
    Sinha, S.K., Turner, K.E.: Natural frequencies of a pre-twisted blade in a centrifugal force field. J. Sound Vib. 330, 2655–2681 (2011)CrossRefGoogle Scholar
  25. 25.
    Sun, J., Kari, L., Arteaga, I.L.: A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the Hamilton’s principle. J. Sound Vib. 332, 1355–1371 (2013)CrossRefGoogle Scholar
  26. 26.
    Rostami, H., Ranji, A.R., Nejad, F.B.: Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates. Int. J. Mech. Sci. 115–116, 438–456 (2016)CrossRefGoogle Scholar
  27. 27.
    Rao, J.S., Gupta, K.: Free vibrations of rotating small aspect ratio pretwisted blades. Mech. Mach. Theory 22(2), 159–167 (1987)CrossRefGoogle Scholar
  28. 28.
    Tsuiji, T., Sueoka, T.: Vibration analysis of twisted thin cylindrical panels by using the Rayleigh–Ritz method. Jpn. Soc. Mech. Eng. Int. J. 33(3), 501–505 (1990)Google Scholar
  29. 29.
    Hu, X.X., Tsuiji, T.: Free vibration analysis of curved and twisted cylindrical thin panels. J. Sound Vib. 219(1), 63–88 (1999)CrossRefGoogle Scholar
  30. 30.
    Hu, X.X., Tsuiji, T.: Free vibration analysis of rotating twisted cylindrical thin panels. J. Sound Vib. 222(2), 209–224 (1999)CrossRefGoogle Scholar
  31. 31.
    Hu, X.X., Tsuiji, T.: Vibration analysis of laminated cylindrical thin panels with twist and curvature. Int. J. Solids Struct. 38, 2713–2736 (2001)zbMATHCrossRefGoogle Scholar
  32. 32.
    Hu, X.X., Lim, C.W., Sakiyama, T., Li, Z.R., Wang, W.K.: Free vibration of elastic helicoidal shells. Int. J. Mech. Sci. 47(6), 941–960 (2005)zbMATHCrossRefGoogle Scholar
  33. 33.
    Sun, J., Arteaga, I.L., Kari, L.: General shell model for a rotating pretwisted blade. J. Sound Vib. 332(22), 5804–5820 (2013)CrossRefGoogle Scholar
  34. 34.
    Ganapathi, M., Varadan, T.K.: Large amplitude vibrations of circular cylindrical shells. J. Sound Vib. 192, 1–14 (1996)CrossRefGoogle Scholar
  35. 35.
    Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non-Linear Mech. 58, 233–257 (2014)CrossRefGoogle Scholar
  36. 36.
    Amabili, M.: A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J. Sound Vib. 264, 1091–1125 (2003)CrossRefGoogle Scholar
  37. 37.
    Amabili, M.: Nonlinear vibrations of circular cylindrical panels. J. Sound Vib. 281(3–5), 509–535 (2005)CrossRefGoogle Scholar
  38. 38.
    Alijani, F., Amabili, M.: Nonlinear vibrations of thick laminated circular cylindrical panels. Compos. Struct. 96, 643–660 (2013)CrossRefGoogle Scholar
  39. 39.
    Alijani, F., Amabili, M., Balasubramanian, P., Carra, S., Ferrari, G., Garziera, R.: Damping for large-amplitude vibrations of plates and curved panels, Part 1: modeling and experiments. Int. J. Non-Linear Mech. 85, 23–40 (2016)CrossRefGoogle Scholar
  40. 40.
    Amabili, M., Alijani, F., Delannoy, J.: Damping for large-amplitude vibrations of plates and curved panels, part 2: identification and comparisons. Int. J. Non-Linear Mech. 85, 226–240 (2016)CrossRefGoogle Scholar
  41. 41.
    Strozzi, M., Pellicano, F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 67, 63–77 (2013)CrossRefGoogle Scholar
  42. 42.
    Hao, Y.X., Niu, Y., Zhang, W., Li, S.B., Yao, M.H., Wang, A.W.: Supersonic flutter analysis of FGM shallow conical panel accounting for thermal effects. Meccanica 53(1–2), 95–109 (2018)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Washizu, K.: Variational Method in Elasticity and Plasticity, 2nd edn. Pergamon, Oxford (1975)zbMATHGoogle Scholar
  44. 44.
    Yao, M. H., Ma, L., Zhang, M. M., Zhang, W.: Vibration characteristics analysis of the rotating blade based on an polynomial aerodynamic force. In: Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017, Cleveland, USA, August 6–9 (2017)Google Scholar
  45. 45.
    Bastürk, S., Uyanik, H., Kazanci, Z.: An analytical model for predicting the deflection of laminated basalt composite plates under dynamic loads. Compos. Struct. 116, 273–285 (2014)CrossRefGoogle Scholar
  46. 46.
    Young, D.: Vibration of rectangular plates by the Ritz method. J. Appl. Mech. 17, 448–453 (1950)zbMATHGoogle Scholar
  47. 47.
    Zheng, Z.C.: Mechanical Vibration, pp. 416–418. China Machine Press, Beijing (1980)Google Scholar
  48. 48.
    Shen, H.S., Wang, H.: Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments. Compos. Part B Eng. 60, 167–177 (2014)CrossRefGoogle Scholar
  49. 49.
    Kobayashi, Y., Leissa, A.W.: Large amplitude free vibration of thick shallow shells supported by shear diaphragms. Int. J. Non-Linear Mech. 30, 57–66 (1995)zbMATHCrossRefGoogle Scholar
  50. 50.
    Chern, Y.C., Chao, C.C.: Comparison of natural frequencies of laminates by 3-D theory, part II: curved panels. J. Sound Vib. 230(5), 1009–1030 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Mechanical EngineeringBeijing University of Technology, Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical StructuresBeijingPeople’s Republic of China
  2. 2.College of Mechanical EngineeringBeijing Information Science and Technology UniversityBeijingPeople’s Republic of China

Personalised recommendations