Advertisement

Nonlinear Dynamics

, Volume 95, Issue 1, pp 43–56 | Cite as

Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction

  • Han BaoEmail author
  • Wenbo Liu
  • Aihuang Hu
Original Paper
  • 157 Downloads

Abstract

The membrane potential difference between two adjacent neurons can induce an electromagnetic induction current that behaves like a memristor synapse effect using to couple these two neurons. Based on two-dimensional (2D) Hindmarsh–Rose (HR) neuron and non-ideal threshold memristor, this paper presents a five-dimensional (5D) neuron model of two adjacent neurons coupled by memristive electromagnetic induction. With the 5D memristor-coupled neuron model, the equilibrium states and their stabilities are investigated by qualitative analyses, and the coexisting phenomena of multiple firing patterns and initials-depending bifurcation routes along with extreme events are then uncovered by numerical simulations. Due to complex stabilities of the seven equilibrium states, the attraction basin of one neuron in the 5D memristor-coupled neuron model is not only related to the coupling strength of memristor synapse but also associated with another neuron initials, leading to that the coexisting multiple firing patterns are emerged from different regions in the attraction basin and the bifurcation routes are closely dependent to the initials. Furthermore, circuit syntheses using the off-the-shelf components and breadboard experiments for the proposed 5D memristor-coupled neuron model are executed so that the coexisting multiple firing patterns and extreme events are then conformed perfectly, which have not yet been previously reported in the coupled HR neuron model.

Keywords

Neuron model Memristor synapse Coexisting multiple firing patterns Initials Stability 

Notes

Acknowledgements

This work was supported by the grants from the National Natural Science Foundations of China under 51777016, 61471191, and 61601062, and the Aeronautical Science Foundation of China under 20152052026.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest. These authors contribute equally to this work.

References

  1. 1.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  2. 2.
    Xu, Y., Jia, Y., Ge, M.Y., Lu, L.L., Yang, L.J., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)CrossRefGoogle Scholar
  3. 3.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)CrossRefGoogle Scholar
  4. 4.
    Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., Kawakami, H.: Bifurcations in Morris–Lecar neuron model. Neurocomputing 69(4–6), 293–316 (2006)CrossRefGoogle Scholar
  5. 5.
    Wu, X.Y., Ma, J., Yuan, L.H., Liu, Y.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75(1–2), 113–126 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mineeja, K.K., Ignatius, R.P.: Spatiotemporal activities of a pulse-coupled biological neural network. Nonlinear Dyn. 92(4), 1881–1897 (2018)CrossRefGoogle Scholar
  8. 8.
    Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)CrossRefGoogle Scholar
  9. 9.
    Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)CrossRefGoogle Scholar
  10. 10.
    Innocenti, G., Genesio, R.: On the dynamics of chaotic spiking-bursting transition in the Hindmarsh–Rose neuron. Chaos 19(2), 023124 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Innocenti, G., Morelli, A., Genesio, R., Torcini, A.: Dynamical phases of the Hindmarsh–Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos 17(4), 043128 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gu, H.: Biological experimental observations of an unnoticed chaos as simulated by the Hindmarsh–Rose model. PLoS ONE 8(12), e81759 (2013)CrossRefGoogle Scholar
  13. 13.
    Gu, H.G., Pan, B.B., Chen, G.R., Duan, L.X.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78(1), 391–407 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chay, T.R.: Chaos in a three-variable model of an excitable cell. Physica D 16, 233–242 (1985)zbMATHCrossRefGoogle Scholar
  15. 15.
    Chay, T.R., Fan, Y.S., Lee, S.: Bursting, spiking, chaos, fractals and universality in biological rhythms. Int. J. Bifurcat. Chaos 5, 595–635 (1995)zbMATHCrossRefGoogle Scholar
  16. 16.
    Ngouonkadi, E.B.M., Fotsin, H.B., Fotso, P.L., Tamba, V.K., Cerdeira, H.A.: Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator. Chaos Solitons Fractals 85, 151–163 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Wu, K.J., Luo, T.Q., Lu, H.W., Wang, Y.: Bifurcation study of neuron firing activity of the modified Hindmarsh–Rose model. Neural Comput. Appl. 27(3), 739–747 (2016)CrossRefGoogle Scholar
  18. 18.
    Kaslik, E.: Analysis of two- and three-dimensional fractional-order Hindmarsh–Rose type neuronal models. Fract. Calc. Appl. Anal. 20(3), 623–645 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dong, J., Zhang, G.J., Xie, Y., Yao, H., Wang, J.: Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn. Neurodyn. 8(2), 167–175 (2014)CrossRefGoogle Scholar
  20. 20.
    Wang, H., Zheng, Y., Lu, Q.: Stability and bifurcation analysis in the coupled HR neurons with delayed synaptic connection. Nonlinear Dyn. 88(3), 2091–2100 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Lakshmanan, S., Lim, C.P., Nahavandi, S., Prakash, M., Balasubramaniam, P.: Dynamical analysis of the Hindmarsh–Rose neuron with time delays. IEEE Trans. Neural Netw. Learn. 28(8), 1953–1958 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Thottil, S.K., Ignatius, R.P.: Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dyn. 87(3), 1879–1899 (2017)CrossRefGoogle Scholar
  23. 23.
    Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci 58(12), 2038–2045 (2015)CrossRefGoogle Scholar
  24. 24.
    Wu, J., Xu, Y., Ma, J.: Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE 12, e0174330 (2017)CrossRefGoogle Scholar
  25. 25.
    Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Ma, J., Xu, Y., Wu, F., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27(2), 1750030 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Wu, F.Q., Wang, C.N., Jin, W.Y., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos Soliton Fractals 104, 435–442 (2017)CrossRefGoogle Scholar
  29. 29.
    Ma, J., Lv, M., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)MathSciNetGoogle Scholar
  30. 30.
    Ren, G.D., Xu, Y., Wang, C.N.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88(2), 893–901 (2017)CrossRefGoogle Scholar
  31. 31.
    Corinto, F., Ascoli, A., Lanza, V., Gilli, M.: Memristor synaptic dynamics’ influence on synchronous behavior of two Hindmarsh–Rose neurons. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2403–2408. IEEE (2011)Google Scholar
  32. 32.
    Xu, F., Zhang, J., Fang, T., Huang, S., Wang, M.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92(3), 1395–1402 (2018)CrossRefGoogle Scholar
  33. 33.
    Bao, B.C., Hu, A.H., Bao, H., Xu, Q., Chen, M., Wu, H.G.: Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity 2018, 3872573 (2018)Google Scholar
  34. 34.
    Ge, M.Y., Jia, Y., Xu, Y., Yang, L.J.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91(1), 515–523 (2018)CrossRefGoogle Scholar
  35. 35.
    Lu, L.L., Jia, Y., Liu, W.H., Yang, L.J.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, 7628537 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)CrossRefGoogle Scholar
  37. 37.
    Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. Neurosci. 9(4), 292–303 (2008)CrossRefGoogle Scholar
  38. 38.
    Bao, B.C., Hu, A.H., Xu, Q., Bao, H., Wu, H.G., Chen, M.: AC induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 92(1), 1695–1706 (2018)CrossRefGoogle Scholar
  39. 39.
    Pinto, R.D., Varona, P., Volkovskii, A.R., Szücs, A., Abarbanel, H.D., Rabinovich, M.I.: Synchronous behavior of two coupled electronic neurons. Phys. Rev. E 62(2), 2644–2656 (2000)CrossRefGoogle Scholar
  40. 40.
    De, L.E., Hasler, M.: Oscillations and oscillatory behavior in small neural circuits. Biol. Cybern. 95(6), 537–554 (2006)CrossRefGoogle Scholar
  41. 41.
    Linaro, D., Poggi, T., Storace, M.: Experimental bifurcation diagram of a circuit-implemented neuron model. Phys. Lett. A 374, 4589–4593 (2011)CrossRefGoogle Scholar
  42. 42.
    Dahasert, N., Öztürk, I., Kiliç, R.: Experimental realizations of the HR neuron model with programmable hardware and synchronization applications. Nonlinear Dyn. 70(4), 2343–2358 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Bao, B.C., Qian, H., Xu, Q., Chen, M., Wang, J., Yu, Y.J.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci. 11(81), 1–14 (2017)Google Scholar
  44. 44.
    Saha, A., Feudel, U.: Riddled basins of attraction in systems exhibiting extreme events. Chaos 28(3), 033610 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Chaudhuri, U., Prasad, A.: Complicated basins and the phenomenon of amplitude death in coupled hidden attractors. Phys. Lett. A 378(9), 713–718 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Hu, X.Y., Liu, C.X., Liu, L., Ni, J.K., Li, S.L.: An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn. 84(4), 2317–2332 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Bao, B.C., Jiang, T., Wang, G.Y., Jin, P.P., Bao, H., Chen, M.: Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89(2), 1157–1171 (2017)CrossRefGoogle Scholar
  48. 48.
    Korn, H., Faure, P.: Is there chaos in the brain II. Experimental evidence and related models. C. R. Biol. 326(9), 787–840 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.School of Information Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations