Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2685–2696 | Cite as

Theoretical aspects of transverse galloping

  • Oriel Shoshani 
Original Paper
  • 83 Downloads

Abstract

We investigate theoretical aspects of a reduced-order model for transverse galloping, which is derived directly from the full governing equations, i.e., the fluid mass and momentum balances, the fluid far-field boundary condition, the kinematic and dynamic conditions at the interface, and the bluff body equation of motion. We show that the presence of low-intensity turbulence and back-action from the slow transverse oscillations of the bluff body yield a correction to the hydrodynamic force of the quasi-steady theory in the form of additive random excitation. The reduced-order model consists of a pair of nonlinear Langevin equations for the amplitude and phase of the transverse motion of the bluff body. We show that while the phase dynamics is associated with a strongly diffusive random walk motion, the amplitude dynamics is associated with a relatively weak diffusion and can be mapped onto the motion of an overdamped particle trapped in a potential well. This mapping provides a highly useful tool for understanding both the deterministic (no random excitation) and the stochastic (weak random excitation) amplitude dynamics, and hence, for yielding theoretical insights on the overall system dynamics.

Keywords

Aeroelasticity Flow-induced vibration Transverse galloping Self-sustained oscillations 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Abdelkefi, A., Hajj, M., Nayfeh, A.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22(1), 015,014 (2012)CrossRefGoogle Scholar
  2. 2.
    Alonso, G., Meseguer, J., Sanz-Andrés, A., Valero, E.: On the galloping instability of two-dimensional bodies having elliptical cross-sections. J. Wind Eng. Ind. Aerodyn. 98(8), 438–448 (2010)CrossRefGoogle Scholar
  3. 3.
    Alonso, G., Pérez-Grande, I., Meseguer, J.: Galloping instabilities of z-shaped shading louvers. Indoor Built Environ. 26(9), 1198–1213 (2017)CrossRefGoogle Scholar
  4. 4.
    Alonso, G., Sanz-Lobera, A., Meseguer, J.: Hysteresis phenomena in transverse galloping of triangular cross-section bodies. J. Fluids Struct. 33, 243–251 (2012)CrossRefGoogle Scholar
  5. 5.
    Alonso, G., Valero, E., Meseguer, J.: An analysis on the dependence on cross section geometry of galloping stability of two-dimensional bodies having either biconvex or rhomboidal cross sections. Eur. J. Mech. B Fluids 28(2), 328–334 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Andrianne, T., Aryoputro, R.P., Laurent, P., Colson, G., Amandolèse, X., Hémon, P.: Energy harvesting from different aeroelastic instabilities of a square cylinder. J. Wind Eng. Ind. Aerodyn. 172, 164–169 (2018)CrossRefGoogle Scholar
  7. 7.
    Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329(14), 2873–2883 (2010)CrossRefGoogle Scholar
  8. 8.
    Barrero-Gil, A., Sanz-Andrés, A., Alonso, G.: Hysteresis in transverse galloping: the role of the inflection points. J. Fluids Struct. 25(6), 1007–1020 (2009)CrossRefGoogle Scholar
  9. 9.
    Bearman, P., Gartshore, I., Maull, D., Parkinson, G.: Experiments on flow-induced vibration of a square-section cylinder. J. Fluids Struct. 1(1), 19–34 (1987)CrossRefGoogle Scholar
  10. 10.
    Bearman, P., Luo, S.: Investigation of the aerodynamic instability of a square-section cylinder by forced oscillation. J. Fluids Struct. 2(2), 161–176 (1988)CrossRefGoogle Scholar
  11. 11.
    Blevins, R.D.: Flow-induced Vibration, 377 pp. Van Nostrand Reinhold Co., New York (1977)Google Scholar
  12. 12.
    Bokaian, A., Geoola, F.: Effects of vortex-resonance on nearby galloping instability. J. Eng. Mech. 111(5), 591–609 (1985)CrossRefGoogle Scholar
  13. 13.
    Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chawla, K.K., Meyers, M.: Mechanical behavior of materials. Prentice Hall, New Jersey (1999)zbMATHGoogle Scholar
  15. 15.
    Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(5), 655–674 (2000)CrossRefGoogle Scholar
  16. 16.
    Den Hartog, J.: Transmission line vibration due to sleet. Trans. Am. Inst. Electr. Eng. 51(4), 1074–1076 (1932)CrossRefGoogle Scholar
  17. 17.
    Dowell, E.H., Curtiss, H.C., Scanlan, R.H., Sisto, F.: A modern course in aeroelasticity, vol. 3. Springer, Berlin (1989)zbMATHCrossRefGoogle Scholar
  18. 18.
    Dykman, M., Golding, B., Ryvkine, D.: Critical exponent crossovers in escape near a bifurcation point. Phys. Rev. Lett. 92(8), 080602 (2004)CrossRefGoogle Scholar
  19. 19.
    Dykman, M., Krivoglaz, M.: Fluctuations in nonlinear systems near bifurcations corresponding to the appearance of new stable states. Physica A Stat. Mech. Appl. 104(3), 480–494 (1980)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dykman, M., Krivoglaz, M.: Theory of nonlinear oscillator interacting with a medium. Sov. Phys. Rev. 5, 265–442 (1984)Google Scholar
  21. 21.
    Gandia, F., Meseguer, J., Sanz-Andrés, A.: Static and dynamic experimental analysis of the galloping stability of porous h-section beams. Sci. World J. 2014, 746826 (2014).  https://doi.org/10.1155/2014/746826 CrossRefGoogle Scholar
  22. 22.
    Gao, G., Zhu, L.: Measurement and verification of unsteady galloping force on a rectangular 2: 1 cylinder. J. Wind Eng. Ind. Aerodyn. 157, 76–94 (2016)CrossRefGoogle Scholar
  23. 23.
    Gao, Gz, Zhu, Ld: Nonlinear mathematical model of unsteady galloping force on a rectangular 2: 1 cylinder. J. Fluids Struct. 70, 47–71 (2017)CrossRefGoogle Scholar
  24. 24.
    Guckenheimer, J., Holmes, P.J.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol. 42. Springer, Berlin (2013)zbMATHGoogle Scholar
  25. 25.
    Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after kramers. Rev. Mod. Phys. 62(2), 251 (1990)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ibarra, D., Sorribes, F., Alonso, G., Meseguer, J.: Transverse galloping of two-dimensional bodies having a rhombic cross-section. J. Sound Vib. 333(13), 2855–2865 (2014)CrossRefGoogle Scholar
  27. 27.
    Joly, A., Etienne, S., Pelletier, D.: Galloping of square cylinders in cross-flow at low reynolds numbers. J. Fluids Struct. 28, 232–243 (2012)CrossRefGoogle Scholar
  28. 28.
    Jung, H.J., Lee, S.W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20(5), 055022 (2011)CrossRefGoogle Scholar
  29. 29.
    Khinchin, A.Y.: Theory of correlation of stationary stochastic processes. Uspekhi matematicheskikh nauk 5, 42–51 (1938)Google Scholar
  30. 30.
    Kluger, J., Moon, F., Rand, R.: Shape optimization of a blunt body vibro-wind galloping oscillator. J. Fluids Struct. 40, 185–200 (2013)CrossRefGoogle Scholar
  31. 31.
    Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Luo, S., Chew, Y., Ng, Y.: Hysteresis phenomenon in the galloping oscillation of a square cylinder. J. Fluids Struct. 18(1), 103–118 (2003)CrossRefGoogle Scholar
  33. 33.
    Luongo, A., Di Fabio, F.: Multimodal galloping of dense spectra structures. J. Wind Eng. Ind. Aerodyn. 48(2–3), 163–174 (1993)CrossRefGoogle Scholar
  34. 34.
    Luongo, A., Paolone, A., Piccardo, G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998)zbMATHCrossRefGoogle Scholar
  35. 35.
    Luongo, A., Piccardo, G.: Non-linear galloping of sagged cables in 1: 2 internal resonance. J. Sound Vib. 214(5), 915–940 (1998)CrossRefGoogle Scholar
  36. 36.
    Luongo, A., Piccardo, G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4–5), 1027–1047 (2005)CrossRefGoogle Scholar
  37. 37.
    Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315(3), 375–393 (2008)CrossRefGoogle Scholar
  38. 38.
    Luongo, A., Zulli, D., Piccardo, G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87(15–16), 1003–1014 (2009)CrossRefGoogle Scholar
  39. 39.
    Mannini, C., Marra, A., Bartoli, G.: Viv-galloping instability of rectangular cylinders: review and new experiments. J. Wind Eng. Ind. Aerodyn. 132, 109–124 (2014)CrossRefGoogle Scholar
  40. 40.
    Mannini, C., Marra, A.M., Bartoli, G.: Experimental investigation on viv-galloping interaction of a rectangular 3: 2 cylinder. Meccanica 50(3), 841–853 (2015)CrossRefGoogle Scholar
  41. 41.
    Mannini, C., Marra, A.M., Massai, T., Bartoli, G.: Interference of vortex-induced vibration and transverse galloping for a rectangular cylinder. J. Fluids Struct. 66, 403–423 (2016)CrossRefGoogle Scholar
  42. 42.
    Mannini, C., Massai, T., Marra, A.M.: Modeling the interference of vortex-induced vibration and galloping for a slender rectangular prism. J. Sound Vib. 419, 493–509 (2018)CrossRefGoogle Scholar
  43. 43.
    Mannini, C., Massai, T., Marra, A.M.: Unsteady galloping of a rectangular cylinder in turbulent flow. J. Wind Eng. Ind. Aerodyn. 173, 210–226 (2018)CrossRefGoogle Scholar
  44. 44.
    Mannini, C., Massai, T., Marra, A.M., Bartoli, G.: Interference of vortex-induced vibration and galloping: Experiments and mathematical modelling. Procedia Eng. 199, 3133–3138 (2017)CrossRefGoogle Scholar
  45. 45.
    Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)zbMATHCrossRefGoogle Scholar
  46. 46.
    McComber, P., Paradis, A.: A cable galloping model for thin ice accretions. Atmos. Res. 46(1), 13–25 (1998)CrossRefGoogle Scholar
  47. 47.
    Nakamura, Y., Matsukawa, T.: Vortex excitation of rectangular cylinders with a long side normal to the flow. J. Fluid Mech. 180, 171–191 (1987)CrossRefGoogle Scholar
  48. 48.
    Ng, Y., Luo, S., Chew, Y.: On using high-order polynomial curve fits in the quasi-steady theory for square-cylinder galloping. J. Fluids Struct. 20(1), 141–146 (2005)CrossRefGoogle Scholar
  49. 49.
    Niu, H., Zhou, S., Chen, Z., Hua, X.: An empirical model for amplitude prediction on viv-galloping instability of rectangular cylinders. Wind Struct. 21(1), 85–103 (2015)CrossRefGoogle Scholar
  50. 50.
    Noel, J., Yadav, R., Li, G., Daqaq, M.: Improving the performance of galloping micro-power generators by passively manipulating the trailing edge. Appl. Phys. Lett. 112(8), 083503 (2018)CrossRefGoogle Scholar
  51. 51.
    Obasaju, E.: An investigation of the effects of incidence on the flow around a square section cylinder. Aeronaut. Q. 34(4), 243–259 (1983)CrossRefGoogle Scholar
  52. 52.
    Okajima, A.: Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379–398 (1982)CrossRefGoogle Scholar
  53. 53.
    Parkinson, G., Brooks, N.: On the aeroelastic instability of bluff cylinders. J. Appl. Mech. 28(2), 252–258 (1961)zbMATHCrossRefGoogle Scholar
  54. 54.
    Parkinson, G., Smith, J.: The square prism as an aeroelastic non-linear oscillator. Q. J. Mech. Appl. Math. 17(2), 225–239 (1964)zbMATHCrossRefGoogle Scholar
  55. 55.
    Parkinson, G., Wawzonek, M.: Some considerations of combined effects of galloping and vortex resonance. J. Wind Eng. Ind. Aerodyn. 8(1–2), 135–143 (1981)CrossRefGoogle Scholar
  56. 56.
    Pulipaka, N., Sarkar, P.P., McDonald, J.R.: On galloping vibration of traffic signal structures. J. Wind Eng. Ind. Aerodyn. 77, 327–336 (1998)CrossRefGoogle Scholar
  57. 57.
    Risken, H.: Fokker-planck equation. In: The Fokker–Planck Equation, pp. 63–95. Springer, Berlin (1996)zbMATHCrossRefGoogle Scholar
  58. 58.
    Robertson, I., Li, L., Sherwin, S., Bearman, P.: A numerical study of rotational and transverse galloping rectangular bodies. J. Fluids Struct. 17(5), 681–699 (2003)CrossRefGoogle Scholar
  59. 59.
    Shoshani, O., Shaw, S.W.: Phase noise reduction and optimal operating conditions for a pair of synchronized oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 63(1), 1–11 (2016)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Simiu, E., Scanlan, R.H.: Wind Effects on Structures. Wiley, New Jersey (1996)Google Scholar
  61. 61.
    Sorribes-Palmer, F., Sanz-Andres, A.: Optimization of energy extraction in transverse galloping. J. Fluids Struct. 43, 124–144 (2013)CrossRefGoogle Scholar
  62. 62.
    Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 2. CRC Press, Boca Raton (1967)zbMATHGoogle Scholar
  63. 63.
    Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge (1972)zbMATHGoogle Scholar
  64. 64.
    Wiener, N.: Generalized harmonic analysis. Acta Mathematica 55(1), 117–258 (1930)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Yang, Y., Zhao, L., Tang, L.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102(6), 064105 (2013)CrossRefGoogle Scholar
  66. 66.
    Zulli, D., Piccardo, G., Luongo, A.: Analysis of dry galloping on inclined cables under stationary wind. In: ENOC 2017, pp. 25–30. Budapest, Hungary (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Mechanical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations