Advertisement

On Lie symmetries and soliton solutions of \((2+1)\)-dimensional Bogoyavlenskii equations

  • Mukesh Kumar
  • Dig Vijay Tanwar
  • Raj Kumar
Original Paper
  • 17 Downloads

Abstract

The present article is devoted to find some invariant solutions of the \((2+1)\)-dimensional Bogoyavlenskii equations using similarity transformations method. The system describes \((2+1)\)-dimensional interaction of a Riemann wave propagating along y-axis with a long wave along x-axis. All possible vector fields, commutative relations and symmetry reductions are obtained by using invariance property of Lie group. Meanwhile, the method reduces the number of independent variables by one, which leads to the reduction of Bogoyavlenskii equations into a system of ordinary differential equations. The system so obtained is solved under some parametric restrictions and provides invariant solutions. The derived solutions are much efficient to explain the several physical properties depending upon various existing arbitrary constants and functions. Moreover, some of them are more general than previously established results (Peng and Shen in Pramana 67:449–456, 2006; Malik et al. in Comput Math Appl 64:2850–2859, 2012; Zahran and Khater in Appl Math Model 40:1769–1775, 2016; Zayed and Al-Nowehy in Opt Quant Electron 49(359):1–23, 2017). In order to provide rich physical structures, the solutions are supplemented by numerical simulation, which yield some positons, negatons, kinks, wavefront, multisoliton and asymptotic nature.

Keywords

Bogoyavlenskii equations Lie group theory Symmetry reductions Invariant solutions 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bogoyavlenskii, O.I.: Breaking solitons in \(2+1\)-dimensional integrable equations. Russ. Math. Surv. 45, 1–86 (1990)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kudryashov, N.A., Pickering, A.: Rational solutions for Schwarzian integrable hierarchies. J. Phys. A Mat. Gen. 31, 9505–9518 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Estévez, P.G., Prada, J.: A generalization of the sine-Gordon equation to \(2+1\) dimensions. J. Nonlinear Math. Phys 11, 164–179 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Peng, Y.Z., Shen, M.: On exact solutions of the Bogoyavlenskii equation. Pramana 67, 449–456 (2006)CrossRefGoogle Scholar
  5. 5.
    Malik, A., Chand, F., Kumar, H., Mishra, S.C.: Exact solutions of the Bogoyavlenskii equation using the multiple \((\frac{G^{^{\prime }}}{G})\)-expansion method. Comput. Math. Appl. 64, 2850–2859 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Zahran, E.H.M., Khater, M.M.A.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40, 1769–1775 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zayed, E.M.E., Al-Nowehy, A.G.: Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method. Opt. Quant. Electron. 49(359), 1–23 (2017)Google Scholar
  8. 8.
    Yu, J., Sun, Y.: Modified method of simplest equation and its applications to the Bogoyavlenskii equation. Comput. Math. Appl. 72, 1943–1955 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Eslami, M., Khodadad, F.S., Nazari, F., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quant. Electron. 49(391), 1–18 (2017)Google Scholar
  10. 10.
    Wazwaz, A.M.: Abundant solutions of various physical features for the \((2+1)\)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wazwaz, A.M.: Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn. 91, 877–883 (2018)CrossRefMATHGoogle Scholar
  12. 12.
    Wazwaz, A.M., Xu, G.Q.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86, 1455–1460 (2016)CrossRefMATHGoogle Scholar
  13. 13.
    Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Demler, E., Maltsev, A.: Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices. Ann. Phys. 326, 1775–1805 (2011)CrossRefMATHGoogle Scholar
  15. 15.
    Daghan, D., Donmez, O.: Exact solutions of the gardner equation and their applications to the different physical plasmas. Braz. J. Phys. 46, 321–333 (2016)CrossRefGoogle Scholar
  16. 16.
    Davydov, A.S.: Solitons in molecular systems. Phys. Scr. 20, 387–394 (1979)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Scott, A.: Davydov’s soliton. Phys. Rep. 217, 1–67 (1992)CrossRefMATHGoogle Scholar
  18. 18.
    Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974)CrossRefMATHGoogle Scholar
  19. 19.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)CrossRefMATHGoogle Scholar
  20. 20.
    Kumar, M., Tanwar, D.V., Kumar, R.: On closed form solutions of \((2+1)\)-breaking soliton system by similarity transformations method. Comput. Math. Appl. 75, 218–234 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kumar, M., Kumar, A., Kumar, R.: Similarity solutions of the Konopelchenko–Dubrovsky system using Lie group theory. Comput. Math. Appl. 71, 2051–2059 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kumar, M., Kumar, R.: Soliton solutions of KD System using similarity transformations method. Comput. Math. Appl. 73, 701–712 (2017)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wang, G.W., Xu, T.Z., Ebadi, G., Johnson, S., Strong, A.J., Biswas, A.: Singular solitons, shock waves, and other solutions to potential KdV equation. Nonlinear Dyn. 76, 1059–1068 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Orhan, Ö., Özer, T.: New conservation forms and Lie algebras of Ermakov–Pinney equation. Discrete Contin. Dyn. Syst. Ser. S 11, 735–746 (2018)MathSciNetMATHGoogle Scholar
  25. 25.
    Özer, T.: An application of symmetry groups to nonlocal continuum mechanics. Comput. Math. Appl. 55, 1923–1942 (2008)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Yaşar, E., Özer, T.: Invariant solutions and conservation laws to nonconservative FP equation. Comput. Math. Appl. 59, 3203–3210 (2010)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kumar, M., Tiwari, A.K., Kumar, R.: Some more solutions of Kadomtsev–Petviashvili equation. Comput. Math. Appl. 74, 2599–2607 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kumar, M., Tiwari, A.K.: Some group-invariant solutions of potential Kadomtsev–Petviashvili equation by using Lie symmetry approach. Nonlinear Dyn. 92, 781–792 (2018)CrossRefGoogle Scholar
  29. 29.
    Bira, B., Raja Sekhar, T., Zeidan, D.: Application of Lie groups to compressible model of two-phase flows. Comput. Math. Appl. 71, 46–56 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Raja Sekhar, T., Satapathy, P.: Group classification for isothermal drift flux model of two phase flows. Comput. Math. Appl. 72, 1436–1443 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sahoo, S., Ray, S.S.: Lie symmetry analysis and exact solutions of \((3+1)\) dimensional Yu–Toda–Sasa–Fukuyama equation in mathematical physics. Comput. Math. Appl. 73, 253–260 (2017)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sahoo, S., Garai, G., Ray, S.S.: Lie symmetry analysis for similarity reduction and exact solutions of modified KdV-Zakharov–Kuznetsov equation. Nonlinear Dyn. 87, 1995–2000 (2017)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  2. 2.Department of MathematicsV. B. S. Purvanchal UniversityJaunpurIndia

Personalised recommendations