Nonlinear Dynamics

, Volume 93, Issue 4, pp 2461–2471 | Cite as

Fuzzy model-based nonfragile control of switched discrete-time systems

  • Bo Wang
  • Dian Zhang
  • Jun ChengEmail author
  • Ju H. ParkEmail author
Original Paper


This paper is concerned with the problem of nonfragile control for a class of fuzzy switched systems with mode-dependent time-varying delays. By constructing novelty Lyapunov function and employing a novel extended reciprocally convex discrete-time inequality, new sets of delay-variation-dependent stability criteria are derived. A nonfragile fuzzy controller is developed, via the parallel distributed compensation technique and stochastic analysis method. At last, numerical simulation is provided to show the effectiveness of achieved result.


Switched system Mode-dependent Nonfragile control Discrete-time Fuzzy model-based 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Shen, H., Wang, T., Chen, M., Lu, J.: Nonfragile mixed \(\cal{H}_{\infty }/\cal{L}_{1}-\cal{L}_{\infty }\) state estimation for repeated scalar nonlinear systems with Markov jumping parameters and redundant channels. Nonlinear Dyn. (2018). Google Scholar
  2. 2.
    He, S., Xu, H.: Non-fragile finite-time filter design for time-delayed Markovian jumping systems via T–S fuzzy model approach. Nonlinear Dyn. 80(3), 1159–1171 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, D., Shi, P., Zhang, W., Yu, L.: Energy-efficient distributed filtering in sensor networks: a unified switched system approach. IEEE Trans. Cybern. 47(7), 1618–1629 (2017)Google Scholar
  4. 4.
    Tian, E., Yue, D., Yang, T.: Analysis and synthesis of randomly switched systems with known sojourn probabilities. Inf. Sci. 277, 481–491 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tian, E., Wong, W.K., Yue, D.: Robust \({\cal{H}}_{\infty }\) control for switched systems with input delays: a sojourn-probability-dependent method. Inf. Sci. 283, 22–35 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    He, S., Song, J., Liu, F.: Robust finite-time bounded controller design of time-delay conic nonlinear systems using sliding mode control strategy. IEEE Trans. Syst. Man Cybern. Syst. (2017). Google Scholar
  7. 7.
    Meng, X., Zhao, S., Feng, T., Zhang, T.: Dynamics of a novel nonlinear stochastic sis epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wu, Z., Cui, M., Shi, P., Karimi, H.R.: Stability of stochastic nonlinear systems with state-dependent switching. IEEE Trans. Autom. Control 58(8), 1904–1918 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Li, F., Meng, X., Cui, Y.: Nonlinear stochastic analysis for a stochastic SIS epidemic model. J. Nonlinear Sci. Appl. 10(9), 5116–5124 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Meng, X., Chen, L., Wang, X.: Some new results for a logistic almost periodic system with infinite delay and discrete delay. Nonlinear Anal. Real World Appl. 10(3), 1255–1264 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, B., Yan, J., Cheng, J., Zhong, S.: New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals. Appl. Math. Comput. 314, 322–333 (2017)MathSciNetGoogle Scholar
  12. 12.
    Zhang, L., Zhuang, S., Shi, P., Zhu, Y.: Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time. IEEE Trans. Autom. Control 60(11), 2994–2999 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, S., Meng, X., Zhang, T.: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects. Nonlinear Anal. Hybrid Syst. 26, 19–37 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, Y., Xia, Y., Li, H., Zhou, P.: A new integral sliding model design method for nonlinear stochastic systems. Automatica 90C, 304–309 (2018)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, Y., Xia, Y., Shen, H., Zhou, P.: SMC design for robust stabilization of nonlinear Markovian jump singular systems. IEEE Trans. Autom. Control 63(1), 219–224 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Su, X., Shi, P., Wu, L., Song, Y.D.: Fault detection filtering for nonlinear switched stochastic systems. IEEE Trans. Autom. Control 61(5), 1310–1315 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cheng, J., Park, J.H., Zhang, L., Zhu, Y.: An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies. IEEE Trans. Fuzzy Syst. 26(1), 6–18 (2018)CrossRefGoogle Scholar
  18. 18.
    Park, M.J., Kwon, O.M.: Stability and stabilization of discrete-time T–S fuzzy systems with time-varying delay via Cauchy–Schwartz-based summation inequality. IEEE Trans. Fuzzy Syst. 25(1), 128–140 (2017)CrossRefGoogle Scholar
  19. 19.
    Park, M.J., Kwon, O.M., Choi, S.G.: Stability analysis of discrete-time switched systems with time-varying delays via a new summation inequality. Nonlinear Anal. Hybrid Syst. 23, 76–90 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kwon, O.M., Park, M.J., Lee, S.H., Park, J.H., Lee, S.M.: Stability and stabilization of T–S fuzzy systems with time-varying delays via augmented Lyapunov–Krasovskii functionals. Inf. Sci. 372, 1–15 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Meng, X., Wang, L., Zhang, T.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)MathSciNetGoogle Scholar
  22. 22.
    Wang, B., Cheng, J., Zhan, J.: A sojourn probability approach to fuzzy-model-based reliable control for switched systems with mode-dependent time-varying delays. Nonlinear Anal. Hybrid Syst. 26, 239–253 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Banu, L.J., Balasubramaniam, P.: Robust stability and stabilization analysis for discrete-time randomly switched fuzzy systems with known sojourn probabilities. Nonlinear Analysis Hybrid Syst. 17, 128–143 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Seuret, A., Gouaisbaut, F., Fridman, E.: Stability of discrete-time systems with time-varying delays via a novel summation inequality. IEEE Trans. Autom. Control 60(10), 2740–2745 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, B., Zhong, S., Dong, X.: On the novel chaotic secure communication scheme design. Commun. Nonlinear Sci. Numer. Simul. 39, 108–117 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, T., Ma, W., Meng, X., Zhang, T.: Periodic solution of a prey–predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)MathSciNetGoogle Scholar
  27. 27.
    Wu, L., Yang, X., Lam, H.K.: Dissipativity analysis and synthesis for discrete-time T–S fuzzy stochastic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 22(2), 380–394 (2014)CrossRefGoogle Scholar
  28. 28.
    Xie, X., Yue, D., Zhang, H., Peng, C.: Control synthesis of discrete-time T-S fuzzy systems: reducing the conservatism whilst alleviating the computational burden. IEEE Trans. Cybern. (2016). Google Scholar
  29. 29.
    Luo, J., Zhao, J.: A generalized multiple Lyapunov functions method based non-fragile guaranteed cost control for uncertain switched fuzzy systems. Appl. Math. Comput. 237, 494–500 (2014)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Park, M.J., Kwon, O.M., Park, J.H., Lee, S.M., Cha, E.J.: Synchronization of discrete-time complex dynamical networks with interval time-varying delays via non-fragile controller with randomly occurring perturbation. J. Frankl. Inst. 351, 4850–4871 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wu, Z.G., Park, J.H., Su, H., Chu, J.: Non-fragile synchronization control for complex networks with missing data. Int. J. Control 86, 555–566 (2013)CrossRefzbMATHGoogle Scholar
  32. 32.
    Wu, Z.G., Dong, S., Shi, P., Su, H., Huang, T., Lu, R.: Fuzzy-model-based nonfragile guaranteed cost control of nonlinear Markov jump systems. IEEE Trans. Syst. Man Cybern. (2017). Google Scholar
  33. 33.
    Sakthivel, R., Aravindh, D., Selvaraj, P., Vimal, S., Kumar, S., Anthoni, M.: Vibration control of structural systems via robust non-fragile sampled-data control scheme. J. Frankl. Inst. 3, 1265–1284 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zhang, C., He, Y., Jiang, L., Wang, Q., Wu, M.: Stability analysis of discrete-time neural networks with time-varying delay via an extended reciprocally convex matrix inequality. IEEE Trans. Cybern. (2017). zbMATHGoogle Scholar
  35. 35.
    Khargonekar, P.P., Petersen, I.R., Zhou, K.: Robust stabilization of uncertain linear systems: quadratic stabilizability and \({\cal{H}}_{\infty }\) control theory. IEEE Trans. Autom. Control 35(3), 356–361 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Park, P., Ko, J.W.: Stability and robust stability for systems with a time-varying delay. Automatica 43(10), 1855–1858 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sakthivel, R., Saravanakumar, T., Ma, Y., Anthoni, S.M.: Finite-time resilient reliable sampled-data control for fuzzy systems with randomly occurring uncertainties. Fuzzy Sets Syst. 329, 1–18 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ghaoui, L.E., Oustry, F., AitRami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Auto. Control 42, 1171–1176 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zhang, L., Ning, Z., Shi, P.: Input-output approach to control for fuzzy Markov jump systems with time-varying delays and uncertain packet dropout rate. IEEE Trans. Cybern. 45(11), 2449–2460 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical Engineering and Electronic InformationXihua UniversityChengduPeople’s Republic of China
  2. 2.School of Automation and Electrical EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  3. 3.Department of Electrical EngineeringYeungnam UniversityKyongsanRepublic of Korea

Personalised recommendations