Nonlinear Dynamics

, Volume 93, Issue 4, pp 2433–2444 | Cite as

Observer-based sliding mode control for switched positive nonlinear systems with asynchronous switching

  • Hangfeng He
  • Xianwen GaoEmail author
  • Wenhai Qi
Original Paper


This paper investigates the problem of observer-based sliding mode control for switched positive nonlinear systems with asynchronous switching. The mode of controller is considered to be asynchronous with the mode of system, which means that there is a lag between the switching of controller and that of system. Firstly, an observer is designed to estimate the unmeasured states via system output. Based on the observed system states, a switched sliding mode control law and corresponding switching law based on mode-dependent average dwell time are designed to guarantee the exponential stability and positivity of the closed-loop system through the appropriate co-positive-type Lyapunov function. Then, the \(L_1\)-gain performance of the system is analyzed. An iterative algorithm is proposed to solve the observer gain and controller gain. Finally, an application example is given to illustrate the effectiveness of the proposed method.


Switched nonlinear systems Positive systems Observer-based sliding mode control Asynchronous switching Mode-dependent average dwell time 



This work is supported by the National Natural Science Foundation of China under Grant 61573088, 61573087, 61433004, 61703231, Natural Science Foundation of Shandong under Grant ZR2017QF001, Postdoctoral Science Foundation of China under Grant 2017M612235.


  1. 1.
    Donkers, M., Heemels, W., Van de Wouw, N., Hetel, L.: Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Autom. Control 56(9), 2101–2115 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Liu, J., Laghrouche, S., Harmouche, M., Wack, M.: Adaptive-gain second-order sliding mode observer design for switching power converters. Control Eng. Pract. 30, 124–131 (2014)CrossRefGoogle Scholar
  3. 3.
    Wei, Y., Park, J.H., Karimi, H. R., Tian, Y.C., Jung, H.: Improved stability and stabilization results for stochastic synchronization of continuous-time semi-Markovian jump neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. (2017).
  4. 4.
    Zhao, X., Yin, S., Li, H., Niu, B.: Switching stabilization for a class of slowly switched systems. IEEE Trans. Autom. Control 60(1), 221–226 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cheng, J., Zhu, H., Zhong, S., Zheng, F.: Finite-time filtering for switched linear systems with a mode-dependent average dwell time. Nonlinear Anal. Hybrid Syst. 15, 145–156 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wang, J., Chen, M., Shen, H.: Event-triggered dissipative filtering for networked semi-Markov jump systems and its applications in a mass-spring system model. Nonlinear Dyn. 87(4), 2741–2753 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lin, J., Shi, Y., Gao, Z., Ding, J.: Functional observer for switched discrete-time singular systems with time delays and unknown inputs. IET Control Theory Appl. 9(14), 2146–2156 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhou, J., Park, J.H., Shen, H.: Non-fragile reduced-order dynamic output feedback \(H_{\infty }\) control for switched systems with average dwell-time switching. Int. J. Control 89(2), 281–296 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wei, Y., Park, J.H., Qiu, J., Jung, H.: Reliable output feedback control for piecewise affine systems with Markov-type sensor failure. IEEE Trans. Circuits Syst. II Express Briefs (2017).
  10. 10.
    Wu, Z., Dong, S., Su, H., Li, C.: Asynchronous dissipative control for fuzzy Markov jump systems. IEEE Trans. Cybern. (2017). Google Scholar
  11. 11.
    Zhang, L., Zhu, Y., Shi, P., Zhao, Y.: Resilient asynchronous \(H_ {\infty }\) filtering for Markov jump neural networks with unideal measurements and multiplicative noises. IEEE Trans. Cybern. 45(12), 2840–2852 (2015)CrossRefGoogle Scholar
  12. 12.
    He, H., Gao, X., Qi, W.: Sampled-data control of asynchronously switched non-linear systems via TS fuzzy model approach. IET Control Theory Appl. 11(16), 2817–2823 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    He, H., Gao, X., Qi, W.: Asynchronous \(H_ {\infty }\) control of time-delayed switched systems with actuator saturation via anti-windup design. Optim. Control Appl. Methods (2017).
  14. 14.
    Xiang, M., Xiang, Z., Karimi, H.R.: Asynchronous \(L_1\) control of delayed switched positive systems with mode-dependent average dwell time. Inf. Sci. 278, 703–714 (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sheikholeslami, M., Sheykholeslami, F.B., Khoshhal, S., Mola-Abasia, H., Ganji, D.D., Rokni, H.B.: Effect of magnetic field on Cuwater nanofluid heat transfer using GMDH-type neural network. Neural Comput. Appl. 25(1), 171–178 (2014)CrossRefGoogle Scholar
  16. 16.
    Guiver, C., Edholm, C., Jin, Y., Mueller, M., Powell, J., Rebarber, R., Townley, S.: Simple adaptive control for positive linear systems with applications to pest management. SIAM J. Appl. Math. 76(1), 238–275 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, J., Han, Z., Wu, H.: Robust finite-time stability and stabilisation of switched positive systems. IET Control Theory Appl. 8(1), 67–75 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Angeli, D., Ferrell, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. 101(7), 1822–1827 (2014)CrossRefGoogle Scholar
  19. 19.
    Kristiansen, R., Nicklasson, P.J.: Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut. 65(11), 1537–1552 (2009)CrossRefGoogle Scholar
  20. 20.
    Qi, W., Park, J.H., Cheng, J., Kao, Y., Gao, W.: Exponential stability and \(L_1\)-gain analysis for positive time-delay Markovian jump systems with switching transition rates subject to average dwell time. Inf. Sci. 424, 224–234 (2018)CrossRefGoogle Scholar
  21. 21.
    Qi, W., Gao, X.: State feedback controller design for singular positive Markovian jump systems with partly known transition rates. Appl. Math. Lett. 46, 111–116 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Xiang, M., Xiang, Z.: Robust fault detection for switched positive linear systems with time-varying delays. ISA Trans. 53(1), 10–16 (2014)CrossRefGoogle Scholar
  23. 23.
    Xiang, M., Xiang, Z.: Observer design of switched positive systems with time-varying delays. Circuits Syst. Signal Process. 32(5), 2171–2184 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhu, S., Han, Q.L., Zhang, C.: \(L_1\)-gain performance analysis and positive filter design for positive discrete-time Markov jump linear systems: a linear programming approach. Automatica 50(8), 2098–2107 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yao, D., Lu, R., Ren, H., Zhou, Q.: Sliding mode control for state-delayed Markov jump systems with partly unknown transition probabilities. Nonlinear Dyn. 91(1), 475–486 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Han, Y., Kao, Y., Gao, C.: Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances. Automatica 75, 210–216 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wei, Y., Park, J.H., Qiu, J., Wu, L., Jung, H.Y.: Sliding mode control for semi-Markovian jump systems via output feedback. Automatica 81, 133–141 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Xue, Y., Zheng, B.C., Yu, X.: Robust sliding mode control for TS fuzzy systems via quantized state feedback. IEEE Trans. Fuzzy Syst. (2017).
  29. 29.
    Zheng, B.C., Yu, X., Xue, Y.: Quantized sliding mode control in delta operator framework. Int. J. Robust Nonlinear Control 28(2), 519–535 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zheng, B.C., Yu, X., Xue, Y.: Quantized feedback sliding-mode control: an event-triggered approach. Automatica 91, 126–135 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wei, Y., Qiu, J., Lam, H.K., Wu, L.: Approaches to TS fuzzy-affine-model-based reliable output feedback control for nonlinear Ito stochastic systems. IEEE Trans. Fuzzy Syst. 25(3), 569–583 (2017)CrossRefGoogle Scholar
  32. 32.
    Wang, H., Shi, P., Zhang, J.: Event-triggered fuzzy filtering for a class of nonlinear networked control systems. Signal Process. 113, 159–168 (2015)CrossRefGoogle Scholar
  33. 33.
    Tang, Z., Park, J.H., Lee, T.H.: Topology and parameters recognition of uncertain complex networks via nonidentical adaptive synchronization. Nonlinear Dyn. 85(4), 2171–2181 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Tong, S., Zhang, L., Li, Y.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans. Cybern. 46(1), 37–47 (2016)Google Scholar
  35. 35.
    Li, Y., Tong, S., Li, T.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)CrossRefGoogle Scholar
  36. 36.
    Ma, R., Zhao, J.: Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings. Automatica 46(11), 1819–1823 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Song, G., Li, T., Hu, K., Zheng, B.: Observer-based quantized control of nonlinear systems with input saturation. Nonlinear Dyn. 86(2), 1157–1169 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lee, T.H., Park, J.H., Ji, D., Jung, H.: Leader-following consensus problem of heterogeneous multi-agent systems with nonlinear dynamics using fuzzy disturbance observer. Complexity 19(4), 20–31 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ding, F., Huang, J., Wang, Y., Zhang, J., He, S.: Sliding mode control with an extended disturbance observer for a class of underactuated system in cascaded form. Nonlinear Dyn. 90(4), 2571–2582 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Kao, Y., Xie, J., Wang, C., Hamid, R.K.: A sliding mode approach to \(H_ {\infty }\) non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems. Automatica 52, 218226 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Li, H., Shi, P., Yao, D., Wu, L.: Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64, 133–142 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Li, S., Xiang, Z.: Stabilisation of a class of positive switched nonlinear systems under asynchronous switching. Int. J. Syst. Sci. 48(7), 1537–1547 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zhang, J., Zhao, X., Cai, X.: Absolute exponential \(L_1\)-gain analysis and synthesis of switched nonlinear positive systems with time-varying delay. Appl. Math. Comput. 284, 24–36 (2016)MathSciNetGoogle Scholar
  44. 44.
    Mathiyalagan, K., Park, J.H., Jung, H.Y., Sakthivel, R.: Non-fragile observer-based \(H_{\infty }\) control for discrete-time systems using passivity theory. Circuits Syst. Signal Process. 34(8), 2499–2516 (2015)CrossRefzbMATHGoogle Scholar
  45. 45.
    Mathiyalagan, K., Park, J.H., Sakthivel, R.: Observer-based dissipative control for networked control systems: a switched system approach. Complexity 21(2), 297–308 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Shen, J., Wang, W.: \(L_1\)-gain analysis and control for switched positive systems with dwell time constraint. Asian J. Control 21(1), 1–11 (2019)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Department of AutomationQufu Normal UniversityRizhaoChina

Personalised recommendations