Nonlinear Dynamics

, Volume 93, Issue 4, pp 2379–2388 | Cite as

Spatiotemporal vector and scalar solitons of the coupled nonlinear Schrödinger equation with spatially modulated cubic–quintic–septimal nonlinearities

  • Yi-Xiang ChenEmail author
  • Li-Hao Zheng
  • Fang-Qian Xu
Original Paper


The spatially modulated cubic–quintic–septimal nonlinearities and transverse modulation are introduced to study the impact on a (3 + 1)-dimensional N-coupled nonlinear Schrödinger equation. As an example, we derive two-component spatiotemporal localized mode solutions including vector multipole and vortex solitons and scalar soliton. The values of the modulation depth q and the topological charge k adjust the construction of vector and scalar solitons. If their values are both chosen as 0, scalar soliton is exhibited; if the value of the modulation depth q becomes 0 and 1, vector multipole and vortex solitons can be displayed, respectively. In two kinds of cubic–quintic–septimal nonlinear media with the transverse parabolic modulation and without transverse modulation, characteristics of vector multipole and vortex solitons and scalar soliton are discussed.


Spatiotemporal vector and scalar solitons (3 + 1)-Dimensional coupled nonlinear Schrödinger equation cubic–quintic–septimal nonlinearities Spatial modulation 



This work was supported by the National Natural Science Foundation of China (Grant No. 11775185).

Compliance with ethical standards

Conflicts of interest

The authors have declared that no conflict of interest exists.


  1. 1.
    Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Nonlinear similariton tunneling effect in the birefringent fiber. Opt. Express 18, 17548–17554 (2010)CrossRefGoogle Scholar
  3. 3.
    Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic–quintic nonlinearity. Nonlinear Dyn. 90, 1269–1275 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dai, C.Q., Wang, D.S., Wang, L.L., Zhang, J.F., Liu, W.M.: Quasi-two-dimensional Bose–Einstein condensates with spatially modulated cubic–quintic nonlinearities. Ann. Phys. 326, 2356–2368 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kong, L.Q., Liu, J., Jin, D.Q., Ding, D.J., Dai, C.Q.: Soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect. Nonlinear Dyn. 87, 83–92 (2017)CrossRefGoogle Scholar
  6. 6.
    Sun, Z.Y., Gao, Y.T., Yu, X., Liu, Y.: Amplification of nonautonomous solitons in the Bose–Einstein condensates and nonlinear optics. Europhys. Lett. 93, 40004 (2011)CrossRefGoogle Scholar
  7. 7.
    Ku, T.S., Shih, M.F., Sukhorukov, A.A., Kivshar, Y.S.: Coherence controlled soliton interactions. Phys. Rev. Lett. 94, 063904 (2005)CrossRefGoogle Scholar
  8. 8.
    Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974)Google Scholar
  9. 9.
    Li, J.T., Zhu, Y., Liu, Q.T., Han, J.Z., Wang, Y.Y., Dai, C.Q.: Vector combined and crossing Kuznetsov–Ma solitons in PT-symmetric coupled waveguides. Nonlinear Dyn. 85, 973–980 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, J.T., Zhang, X.T., Meng, M., Liu, Q.T., Wang, Y.Y., Dai, C.Q.: Control and management of the combined Peregrine soliton and Akhmediev breathers in PT-symmetric coupled waveguides. Nonlinear Dyn. 84, 473–479 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, Y.X.: PT-symmetric and PT-antisymmetric superposed breathers in (3 + 1)-dimensional inhomogeneous nonlinear couplers with balanced gain and loss. Nonlinear Dyn. 85, 2801–2808 (2016)CrossRefGoogle Scholar
  12. 12.
    Chen, H.Y., Zhu, H.P.: Repetitive excitations of controllable vector breathers in a nonlinear system with different distributed transverse diffractions from arterial mechanics and optical fibers. Nonlinear Dyn. 86, 381–387 (2016)CrossRefGoogle Scholar
  13. 13.
    Hacinliyan, I., Saadet, E.: Coupled quintic nonlinear Schrödinger equations in a generalized elastic solid. J. Phys. A Math. Gen. 37, 9387–9401 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hong, W.P.: On generation of coherent structures induced by modulational instability in linearly coupled cubic–quintic Ginzburg–Landau equations. Opt. Commun. 281, 6112–6119 (2008)CrossRefGoogle Scholar
  15. 15.
    Borah, A., Ghosh, S., Nandy, S.: Interaction of coupled higher order nonlinear Schrödinger equation solitons. Eur. Phys. J. B Condens. Matter Complex Syst. 29, 221–225 (2002)CrossRefGoogle Scholar
  16. 16.
    Mani Rajan, M.S., Hakkim, J., Mahalingam, A., Uthayakumar, A.: Dispersion management and cascade compression of femtosecond nonautonomous soliton in birefringent fiber. Eur. Phys. J. D At. Mol. Opt. Phys. 67, 150 (2013)Google Scholar
  17. 17.
    Wu, H.Y., Jiang, L.H.: Spatiotemporal bright and dark vector multipole and vortex solitons for coupled nonlinear Schrodinger equation with spatially modulated quintic nonlinearity. Nonlinear Dyn. 90, 1419–1425 (2017)CrossRefGoogle Scholar
  18. 18.
    Reyna, A.S., Malomed, B.A., de Araújo, C.B.: Stability conditions for one-dimensional optical solitons in cubic–quintic–septimal media. Phys. Rev. A 92, 033810 (2015)CrossRefGoogle Scholar
  19. 19.
    Reyna, A.S., Jorge, K.C., de Araújo, C.B.: Two-dimensional solitons in a quintic-septimal medium. Phys. Rev. A 90, 063835 (2014)CrossRefGoogle Scholar
  20. 20.
    Chen, Y.X.: One-dimensional optical solitons in cubic–quintic-septimal media with PT-symmetric potentials. Nonlinear Dyn. 87, 1629–1635 (2017)CrossRefGoogle Scholar
  21. 21.
    Wu, H.Y., Jiang, L.H., Wu, Y.F.: The stability of two-dimensional spatial solitons in cubic–quintic–septimal nonlinear media with different diffractions and PT-symmetric potentials. Nonlinear Dyn. 87, 1667–1674 (2017)CrossRefGoogle Scholar
  22. 22.
    Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic–quintic–septimal nonlinear media with PT-symmetric potentials. Nonlinear Dyn. 87, 1675–1683 (2017)CrossRefGoogle Scholar
  23. 23.
    Reyna, A.S., de Araújo, C.B.: Spatial phase modulation due to quintic and septic nonlinearities in metal colloids. Opt. Express 22, 22456–22469 (2014)CrossRefGoogle Scholar
  24. 24.
    Wang, Y.Y., Dai, C.Q., Zhou, G.Q., Fan, Y., Chen, L.: Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn. 87, 67–73 (2017)CrossRefGoogle Scholar
  25. 25.
    Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373–1383 (2017)CrossRefGoogle Scholar
  26. 26.
    Chen, R.P., Dai, C.Q.: Three-dimensional vector solitons and their stabilities in a Kerr medium with spatially inhomogeneous nonlinearity and transverse modulation. Nonlinear Dyn. 88, 2807–2816 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 92, 1261–1269 (2018)CrossRefGoogle Scholar
  28. 28.
    Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)CrossRefGoogle Scholar
  29. 29.
    Wang, Y.Y., Zhang, Y.P., Dai, C.Q.: Re-study on localized structures based on variable separation solutions from the modified tan\(h\)-function method. Nonlinear Dyn. 83, 1331–1339 (2016)CrossRefGoogle Scholar
  30. 30.
    Zhang, B., Zhang, X.L., Dai, C.Q.: Discussions on localized structures based on equivalent solution with different forms of breaking soliton model. Nonlinear Dyn. 87, 2385–2393 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Belmonte-Beitia, J., Perez-Garcia, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)CrossRefGoogle Scholar
  32. 32.
    Whittaker, E.T., Watson, G.N.: A course in modern analysis, 4th edn. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  33. 33.
    Abramowitz, M., Stegun, I.: Handbook of mathematical functions. Dover, New York (1965)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics InformationZhejiang University of Media and CommunicationsHangzhouPeople’s Republic of China

Personalised recommendations