Advertisement

Nonlinear Dynamics

, Volume 93, Issue 4, pp 2283–2300 | Cite as

The saddle case of Rayleigh–Duffing oscillators

  • Hebai Chen
  • Deqing Huang
  • Yupei Jian
Original Paper
  • 177 Downloads

Abstract

The global dynamics of Rayleigh–Duffing oscillators \(\ddot{x}+a\dot{x}+b\dot{x}^3+cx+dx^3=0\), where \((a,b,c,d)\in \{(a,b,c,d)\in \mathbb {R}^4: b\ne 0,~d>0\}\), have been investigated in Chen and Zou (J Phys A 49:165202, 2016). In this paper, the complement case \((a,b,c,d)\in \{(a,b,c,d)\in \mathbb {R}^4: b\ne 0,~d<0\}\) will be completely studied, where the bifurcation diagram includes pitchfork bifurcation, Hopf bifurcation, and heteroclinic bifurcation. Meanwhile, the global phase portraits in the Poincaré disc are given. The system has at most one limit cycle. Moreover, when the limit cycle exists, its corresponding parameter region lies between Hopf and heteroclinic loop bifurcation curves in the parametric space. In addition, the analytic properties of the heteroclinic loop bifurcation curve are also analyzed. Finally, a few numerical examples are presented to verify our theoretical results.

Keywords

Rayleigh–Duffing oscillator Limit cycle 2-Saddle loop Bifurcation diagram 

Mathematics Subject Classification

34C07 34C23 34C37 34K18 

Notes

Acknowledgements

Research is partially supported by National Natural Science Foundation of China under Grant Nos. 11572263, 61773323, 61603316, 61433011. The authors are grateful to the reviewers for their helpful suggestions and comments.

References

  1. 1.
    Bikdash, M., Balachandran, B., Nayfeh, A.H.: Melnikov analysis for a ship with a general Roll-damping model. Nonlinear Dyn. 6, 101–124 (1994)Google Scholar
  2. 2.
    Chen, H., Chen, X., Xie, J.: Global phase portrait of a degenerate Bogdanov–Takens system with symmetry. Discrete Contin. Dyn. Syst. (Ser. B) 22, 1273–1293 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, H., Chen, X.: Global phase portraits of a degenerate Bogdanov–Takens system with symmetry: (II). Discrete Contin. Dyn. Syst. (Ser. B). (2017).  https://doi.org/10.3934/dcdsb.2018130
  4. 4.
    Chen, H., Zou, L.: Global study of Rayleigh–Duffing oscillators. J. Phys. A 49, 165202 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chow, S.-N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge Press, New York (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Elzebda, J.M., Nayfeh, A.H., Mook, D.T.: Development of an analytical model of wing rock for slender delta wings. J. Aircr. 26, 737–743 (1989)CrossRefGoogle Scholar
  7. 7.
    Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F.: Comments on nonlinear dynamics of a non-ideal Duffing–Rayleigh oscillator: numerical and analytical approaches. J. Sound Vib. 319, 1136–1149 (2009)CrossRefGoogle Scholar
  8. 8.
    Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Study of a degenerate Bogdanov–Takens bifurcation in a family of mechanical oscillator. Mech. Res. Commun. 25, 287–297 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1997)zbMATHGoogle Scholar
  10. 10.
    Herfort, W., Troger, H.: Robust modelling of flow induced oscillations of bluff bodies. Math. Model. Sci. Technol. 8, 251–255 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Holmes, P., Rand, D.A.: Phase portraits and bifurcations of the nonlinear oscillator \(\ddot{x}+(\alpha +\gamma x^2)\dot{x}+\beta x+\delta x^3=0\). Int. J. Non-Linear Mech. 15, 449–458 (1980)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kanai, Y., Yabuno, H.: Creation-annihilation process of limit cycles in the Rayleigh–Duffing oscillator. Nonlinear Dyn. 70, 1007–1016 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, C., Rousseau, C.: Codimension \(2\) symmetric homoclinic bifurcations and application to \(1:2\) resonance. Can. J. Math. 42, 191–212 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Malamud, S.M.: Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter. P. Am. Math. Soc 129, 2671–2678 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, Weinheim (2004)zbMATHGoogle Scholar
  16. 16.
    Siewe, M., Tchawouab, C., Woafoc, P.: Melnikov chaos in a periodically driven Rayleigh–Duffing oscillator. Mech. Res. Commun. 37, 363–368 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Skeldon, A.C., Moroz, I.M.: On a codimension-three bifurcation arising in a simple dynamo model. Phys. D 117, 117–127 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Troger, H., Steindl, A.: Nonlinear Stability and Bifurcation Theory. Springer, Wien (1991)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, W., Yu, P.: A study of the limit cycles associated with a generalized codimension-3 linear oscillator. J. Sound Vib. 231, 145–173 (2000)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. Translations of Mathematical Monographs, American Mathematical Society, Providence (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceFuzhou UniversityFuzhouPeople’s Republic of China
  2. 2.Key Laboratory of Operations Research and Control of University in FujianFuzhou UniversityFuzhouPeople’s Republic of China
  3. 3.Institute of Systems Science and Technology, School of Electrical EngineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations