Nonlinear Dynamics

, Volume 93, Issue 4, pp 2273–2282 | Cite as

Chattering reduced sliding mode control for a class of chaotic systems

  • Shuyi Lin
  • Weidong ZhangEmail author
Original Paper


This paper presents a sliding mode control scheme for chaotic systems. Finite time stability of the system states is realized by implementing the proposed controller, which is designed on the basis of a nonlinear sliding surface and a new sliding mode reaching law. The new reaching law contributes good control performance in terms of system reaching time and input chattering reduction. Principles for controller parameter selection are given in detail. Simulation results of two controlled chaotic systems are provided to demonstrate effectiveness of the proposed method.


Chaotic control Reaching time reduction Chattering reduction Finite time stability 



The authors thank the editor and anonymous reviewers for their valuable remarks and helpful suggestions. This study is partly supported by the National Natural Science Foundation of China (U1509211, 61473183, 61627810).


  1. 1.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Yu, Y., Jia, H., Li, P., Su, J.: Power system instability and chaos. Electr. Power Syst. Res. 65(3), 187–195 (2003)CrossRefGoogle Scholar
  3. 3.
    Jimenez-Triana, A., Chen, G., Gauthier, A.: A parameter-perturbation method for chaos control to stabilizing upos. IEEE Trans. Circuits Syst. II Express Briefs 62(4), 407–411 (2015)CrossRefGoogle Scholar
  4. 4.
    Feng, G., Chen, G.: Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos Solitons Fractals 23(2), 459–467 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, S., Lü, J.: Synchronization of an uncertain unified chaotic system via adaptive control. Chaos Solitons Fractals 14(4), 643–647 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fuh, C.C., Tsai, H.H., Yao, W.H.: Combining a feedback linearization controller with a disturbance observer to control a chaotic system under external excitation. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1423–1429 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pai, M.C.: Global synchronization of uncertain chaotic systems via discrete-time sliding mode control. Appl. Math. Comput. 227, 663–671 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ni, J., Liu, L., Liu, C., Hu, X., Shen, T.: Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system. Nonlinear Dyn. 86(1), 401–420 (2016)CrossRefzbMATHGoogle Scholar
  9. 9.
    Park, J.H.: Synchronization of genesio chaotic system via backstepping approach. Chaos Solitons Fractals 27(5), 1369–1375 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Yu, J., Chen, B., Yu, H., Gao, J.: Adaptive fuzzy tracking control for the chaotic permanent magnet synchronous motor drive system via backstepping. Nonlinear Anal. Real World Appl. 12(1), 671–681 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhou, P., Zhu, P.: A practical synchronization approach for fractional-order chaotic systems. Nonlinear Dyn. 89, 1719–1726 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a t–s fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)CrossRefGoogle Scholar
  13. 13.
    Young, K.D., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. In: 1996 IEEE international workshop on variable structure systems, VSS’96, proceedings, pp 1–14. IEEE (1996)Google Scholar
  14. 14.
    Chiang, T.Y., Hung, M.L., Yan, J.J., Yang, Y.S., Chang, J.F.: Sliding mode control for uncertain unified chaotic systems with input nonlinearity. Chaos Solitons Fractals 34(2), 437–442 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dadras, S., Momeni, H.R., Majd, V.J.: Sliding mode control for uncertain new chaotic dynamical system. Chaos Solitons Fractals 41(4), 1857–1862 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, H., Zz, Han, Qy, Xie, Zhang, W.: Sliding mode control for chaotic systems based on LMI. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1410–1417 (2009a)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2728–2733 (2009b)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35(6), 3080–3091 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pan, Y., Yang, C., Pan, L., Yu, H.: Integral sliding mode control: performance, modification and improvement. IEEE Trans. Ind. Inform. (2017).
  20. 20.
    Li, H., Liao, X., Li, C., Li, C.: Chaos control and synchronization via a novel chatter free sliding mode control strategy. Neurocomputing 74(17), 3212–3222 (2011)CrossRefGoogle Scholar
  21. 21.
    Zhang, X., Liu, X., Zhu, Q.: Adaptive chatter free sliding mode control for a class of uncertain chaotic systems. Appl. Math. Comput. 232, 431–435 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Fallaha, C.J., Saad, M., Kanaan, H.Y., Al-Haddad, K.: Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 58(2), 600–610 (2011)CrossRefGoogle Scholar
  23. 23.
    Liu, L., Han, Z., Li, W.: Global sliding mode control and application in chaotic systems. Nonlinear Dyn. 56(1), 193–198 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, Z., Park, J.B., Joo, Y.H., Zhang, B., Chen, G.: Bifurcations and chaos in a permanent-magnet synchronous motor. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(3), 383–387 (2002)CrossRefGoogle Scholar
  26. 26.
    Gao, W., Hung, J.C.: Variable structure control of nonlinear systems: a new approach. IEEE Trans. Ind. Electron. 40(1), 45–55 (1993)CrossRefGoogle Scholar
  27. 27.
    Gao, T., Chen, G., Chen, Z., Cang, S.: The generation and circuit implementation of a new hyper-chaos based upon Lorenz system. Phys. Lett. A 361(1), 78–86 (2007)CrossRefzbMATHGoogle Scholar
  28. 28.
    Fridman, L., Shtessel, Y., Edwards, C., Yan, X.G.: Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18(4–5), 399–412 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bartolini, G., Pisano, A., Usai, E.: An improved second-order sliding-mode control scheme robust against the measurement noise. IEEE Trans. Autom. Control 49(10), 1731–1737 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AutomationShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Computer Engineering and ScienceShanghai UniversityShanghaiChina

Personalised recommendations