Advertisement

Nonlinear Dynamics

, Volume 93, Issue 4, pp 1765–1798 | Cite as

Overview of dynamic modelling and analysis of rolling element bearings with localized and distributed faults

  • Jing Liu
  • Yimin Shao
Review

Abstract

Rolling element bearings (REBs) play a most critical role in various industrial machinery. A clearly and in-depth understanding of vibration characteristics of REBs is very helpful for condition monitoring and diagnosis applications for the machinery. This work presented a comprehensive review of dynamic modelling and analysis methods for predicting the vibration characteristics of REBs with and without localized and distributed faults. Main capabilities and limitations of those methods for both the localized and distributed faults have been described. Explanations for the generations of the bearing vibrations were also reviewed. A summary of the literature was given followed by the recommendations of current and future research works. Moreover, recent challenges, directions and implications in research works on the dynamic modelling and analysis methods of the localized and distributed faults in REBs have also been conducted.

Keywords

Rolling element bearings (REBs) Localized faults Distributed faults Dynamic modelling Vibration analysis 

Notes

Acknowledgements

The research work financed with the National Natural Science Foundation of China under Grant Nos. 51605051 and 51475053, and Chongqing Research Program of Basic Research and Frontier Technology No. cstc2017jcyjAX0202.

References

  1. 1.
    Tandon, N., Nakra, B.C.: Vibration and acoustic monitoring techniques for the detection of defects in rolling element bearings: a review. Shock Vib. Dig. 24(3), 3–11 (1992)CrossRefGoogle Scholar
  2. 2.
    Kim, P.Y., Lowe, I.R.G.: A review of rolling element bearing health monitoring. In: Proceedings of Machinery Vibration Monitoring and Analysis Meeting, Vibration Institute, Houston, TX, 19–21 April, pp. 145–154 (1983)Google Scholar
  3. 3.
    Mathew, J., Alfredson, R.J.: The condition monitoring of rolling element bearings using vibration analysis. J. Vib. Acoust. Stress Reliab. Des. 106(3), 447–453 (1984)CrossRefGoogle Scholar
  4. 4.
    McFadden, P.D., Smith, J.D.: Vibration monitoring of rolling element bearings by the high-frequency resonance technique: a review. Tribol. Int. 17(1), 3–10 (1984)CrossRefGoogle Scholar
  5. 5.
    Kim, P.Y.I.: A review of rolling element bearing health monitoring: preliminary test results on current technologies. II. In: Proceedings of Machinery Vibration Monitoring and Analysis Meeting, Vibration Institute, New Orleans, LA, 26–28 June, pp. 127–137 (1988)Google Scholar
  6. 6.
    Kim, P.Y.: A review of rolling element bearing health monitoring (III): preliminary test results on eddy current proximity transducer technique. In: Proceedings of 3rd International Conference on Vibration in Rotating Machinery, York, UK, 11–13 September, pp. 119–125 (1984)Google Scholar
  7. 7.
    Houser, D.R., Drosjack, M.J.: Vibration signal analysis techniques. In: Technical Report, U. S. Army Air Mobility Research and Development Laboratory (1973)Google Scholar
  8. 8.
    Collacott, R.A.: Vibration Monitoring and Diagnosis, Techniques for Cost-Effective Plant Maintenance. Halsted Press, Wiley, New York (1979)Google Scholar
  9. 9.
    Roger, L.M.: The application of vibration analysis and acoustic emission source location to on-line condition monitoring of anti-friction bearings. Tribol. Int. 12(2), 51–58 (1979)CrossRefGoogle Scholar
  10. 10.
    Yu, W., Mechefske, C.K., Timusk, M.: The dynamic coupling behavior of a cylindrical geared rotor system subjected to gear eccentricities. Mech. Mach. Theory 107, 105–122 (2017)CrossRefGoogle Scholar
  11. 11.
    Yu, W., Mechefske, C.K., Timusk, M.: Effects of tooth plastic inclination deformation due to spatial cracks on the dynamic features of a gear system. Nonlinear Dyn. 87, 2643–2659 (2017)CrossRefGoogle Scholar
  12. 12.
    Swansson, N.S., Favaloro, S.C.: Applications of vibration analysis to the condition monitoring of rolling element bearings. In: Technical Report ARL-AERO-PROP-R-163, p. 1984. Defence Science and Technology Organisation, Australia, January (1984)Google Scholar
  13. 13.
    Choudhury, A., Tandon, N.: Application of acoustic emission technique for the detection of defects in rolling element bearings. Tribol. Int. 33(1), 39–45 (2000)CrossRefGoogle Scholar
  14. 14.
    Antoni, J.: The spectral kurtosis: a useful tool for characterising non-stationary signals. Mech. Syst. Signal Process. 20(2), 282–307 (2006)CrossRefGoogle Scholar
  15. 15.
    Antoni, J., Randall, R.B.: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 20(2), 308–331 (2006)CrossRefGoogle Scholar
  16. 16.
    Antoni, J.: Fast computation of the kurtogram for the detection of transient faults. Mech. Syst. Signal Process. 21(1), 108–124 (2007)CrossRefGoogle Scholar
  17. 17.
    Mba, D., Rao, R.B.: Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines; bearings, pumps, gearboxes, engines and rotating structures. Shock Vib. Dig. 38(1), 3–16 (2006)CrossRefGoogle Scholar
  18. 18.
    Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)CrossRefGoogle Scholar
  19. 19.
    Randall, R.B., Antoni, J.: Rolling element bearing diagnostics: a tutorial. Mech. Syst. Signal Process. 25(2), 485–520 (2011)CrossRefGoogle Scholar
  20. 20.
    Randall, R.B.: Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  21. 21.
    Ma, H., Song, R., Pang, X., Wen, B.: Time-varying mesh stiffness calculation of cracked spur gears. Eng. Fail. Anal. 44, 179–194 (2014)CrossRefGoogle Scholar
  22. 22.
    Ma, H., Zeng, J., Feng, R., Pang, X., Wang, Q., Wen, B.: Review on dynamics of cracked gear systems. Eng. Fail. Anal. 55, 224–245 (2015)CrossRefGoogle Scholar
  23. 23.
    Ma, H., Pang, X., Feng, R., Song, R., Wen, B.: Fault features analysis of cracked gear considering the effects of the extended tooth contact. Eng. Fail. Anal. 48, 105–120 (2015)CrossRefGoogle Scholar
  24. 24.
    Wu, W., Hu, C., Hu, J., Yuan, S.: Jet cooling for rolling bearings: flow visualization and temperature distribution. Appl. Therm. Eng. 105, 217–224 (2016)CrossRefGoogle Scholar
  25. 25.
    Tandon, N., Choudhury, A.K.: A review of vibration and acoustic and acoustic measurement methods for the detection of defects in rolling element bearing. Tribol. Int. 32(8), 469–480 (1999)CrossRefGoogle Scholar
  26. 26.
    Elthalji, I., Jantunen, E.: A summary of fault modelling and predictive health monitoring of rolling element bearings. Mech. Syst. Signal Process. 60–61, 252–272 (2015)CrossRefGoogle Scholar
  27. 27.
    Singh, S., Howard, C.Q., Hansen, C.H.: An extensive review of vibration modelling of rolling element bearings with localised and extended defects. J. Sound Vib. 357, 300–330 (2015)CrossRefGoogle Scholar
  28. 28.
    Cao, H., Niu, L., Xi, S., Chen, X.: Mechanical model development of rolling bearing-rotor systems: a review. Mech. Syst. Signal Process. 102, 37–58 (2018)CrossRefGoogle Scholar
  29. 29.
    Rubini, R., Meneghetti, U.: Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech. Syst. Signal Process. 15(2), 287–302 (2001)CrossRefGoogle Scholar
  30. 30.
    Bell, R.N., Mcwilliams, D.W., Odonnell, P., Singh, C., Wells, S.J.: Report of large motor reliability survey of industrial and commercial installations. I. IEEE Trans. Ind. Appl. 21(4), 853–864 (1985)Google Scholar
  31. 31.
    Bell, R.N., Heising, C.R., Odonnell, P., Singh, C., Wells, S.J.: Report of large motor reliability survey of industrial and commercial installations. II. IEEE Trans. Ind. Appl. 21(4), 865–872 (1985)Google Scholar
  32. 32.
    O’Donnell, P., Heising, C., Singh, C., Wells, S.: Report of large motor reliability survey of industrial and commercial installations. III. IEEE Trans. Ind. Appl. 23(1), 153–158 (1987)Google Scholar
  33. 33.
    Albrecht, P.F., Appiarius, J.C., McCoy, R.M., Owen, E.L., Sharma, D.K.: Assessment of the reliability of motors in utility applications: updated. IEEE Trans. Energy Convers. 1, 39–46 (1986)CrossRefGoogle Scholar
  34. 34.
    Zhang, P., Du, Y., Habetler, T.G., Lu, B.: A survey of condition monitoring and protection methods for medium-voltage induction motors. IEEE Trans. Ind. Appl. 47(1), 34–46 (2011)CrossRefGoogle Scholar
  35. 35.
    Seinsch, H.O.: Monitoring und diagnose elektrischer maschinen und antriebe. In: Proceedings VDE Workshop, Allianz Schadensstatistik an HS Motoren, 1996–1999. VDE (2001, June)Google Scholar
  36. 36.
    Lou, B., Han, L., Lu, Z., Liu, S., Shen, F.: The rolling contact fatigue behaviors in carburized and hardened steel. In: Kitagawa, H., Tanaka, T. (eds.) Fatigue 90: Proceedings of the Fourth International Conference on Fatigue and Fatigue Thresholds, pp. 627–632. Honolulu, HI (1990, July)Google Scholar
  37. 37.
    Saheta, V.: Dynamics of Rolling Element Bearings Using Discrete Element Method. M.S. Thesis, Purdue University, West Lafayette (2001)Google Scholar
  38. 38.
    Ghaisas, N.S., Wassgren, C., Sadeghi, F.: Cage instabilities in cylindrical roller bearings. J. Tribol. 126(4), 681–689 (2004)CrossRefGoogle Scholar
  39. 39.
    Raje, N., Sadeghi, F., Rateick, R.G., Hoeprich, M.R.: A numerical model for life scatter in rolling element bearings. J. Tribol. 130(1), 011011 (2008)CrossRefGoogle Scholar
  40. 40.
    Raje, N., Sadeghi, F., Rateick, R.G.: A statistical damage mechanics model for subsurface initiated spalling in rolling contacts. J. Tribol. 130(4), 042201 (2008)CrossRefGoogle Scholar
  41. 41.
    Jalalahmadi, B., Sadeghi, F.: A Voronoi FE fatigue damage model for life scatter in rolling contacts. J. Tribol. 132(2), 021404 (2010)CrossRefGoogle Scholar
  42. 42.
    Slack, T., Sadeghi, F.: Explicit finite element modeling of subsurface initiated spalling in rolling contacts. Tribol. Int. 43(9), 1693–1702 (2010)CrossRefGoogle Scholar
  43. 43.
    Warhadpande, A., Sadeghi, F., Kotzalas, M.N., Doll, G.: Effects of plasticity on subsurface initiated spalling in rolling contact fatigue. Int. J. Fatigue 36(1), 80–95 (2012)CrossRefGoogle Scholar
  44. 44.
    Weinzapfel, N., Sadeghi, F., Bakolas, V., Liebel, A.: A 3D finite element study of fatigue life dispersion in rolling line contacts. J. Tribol. 133(4), 042202 (2011)CrossRefGoogle Scholar
  45. 45.
    Weinzapfel, N., Sadeghi, F., Bakolas, V.: An approach for modeling material grain structure in investigations of Hertzian subsurface stresses and rolling contact fatigue. J. Tribol. 132(4), 041404 (2010)CrossRefGoogle Scholar
  46. 46.
    Weinzapfel, N., Sadeghi, F.: Numerical modeling of sub-surface initiated spalling in rolling contacts. Tribol. Int. 59, 210–221 (2013)CrossRefGoogle Scholar
  47. 47.
    Ren, Z., Glodez, S., Fajdiga, G., Ulbin, M.: Surface initiated crack growth simulation in moving lubricated contact. Theoret. Appl. Fract. Mech. 38(2), 141–149 (2002)CrossRefGoogle Scholar
  48. 48.
    Yoshioka, T., Fujiwara, T.: Measurement of propagation initiation and propagation time of rolling contact fatigue cracks by observation of acoustic. Tribol. Ser. 12, 29–33 (1987)CrossRefGoogle Scholar
  49. 49.
    Yoshioka, T.: Detection of rolling contact sub-surface fatigue cracks using acoustic emission technique. Lubr. Eng. 49(4), 303–308 (1993)Google Scholar
  50. 50.
    Mano, H., Yoshioka, T., Korenaga, A., Yamamoto, T.: Relationship between growth of rolling contact fatigue cracks and load distribution. Tribol. Trans. 43(3), 367–376 (2000)CrossRefGoogle Scholar
  51. 51.
    Schwach, D.W., Guo, Y.B.: A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int. J. Fatigue 28(12), 1838–1844 (2006)CrossRefGoogle Scholar
  52. 52.
    Elforjani, M., Mba, D.: Assessment of natural crack initiation and its propagation in slow speed bearings. Nondestruct. Test. Eval. 24(3), 261–275 (2009)CrossRefGoogle Scholar
  53. 53.
    Eftekharnejad, B., Carrasco, M.R., Charnley, B., Mba, D.: The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing. Mech. Syst. Signal Process. 25(1), 266–284 (2011)CrossRefGoogle Scholar
  54. 54.
    Zhang, Z.Q., Li, G.L., Wang, H.D., Xu, B.S., Piao, Z.Y., Zhu, L.N.: Investigation of rolling contact fatigue damage process of the coating by acoustics emission and vibration signals. Tribol. Int. 47, 25–31 (2012)CrossRefGoogle Scholar
  55. 55.
    Zhao, P., Hadfield, M., Wang, Y.G., Vieillard, C.: Subsurface propagation of partial ring cracks under rolling contact. Part I. Exp. Stud. Wear 261(3), 382–389 (2006)CrossRefGoogle Scholar
  56. 56.
    Zhao, P., Hadfield, M., Wang, Y.G., Vieillard, C.: Subsurface propagation of partial ring cracks under rolling contact. Part II. Fract. Mech. Anal. Wear 261(3), 390–397 (2006)Google Scholar
  57. 57.
    Glodež, S., Potocnik, R., Flasker, J., Zafosnik, B.: Numerical modelling of crack path in the lubricated rolling-sliding contact problems. Eng. Fract. Mech. 75(3), 880–891 (2008)CrossRefGoogle Scholar
  58. 58.
    Kadin, Y., Rychahivskyy, A.V.: Modeling of surface cracks in rolling contact. Mater. Sci. Eng. A 541, 143–151 (2012)CrossRefGoogle Scholar
  59. 59.
    Wen, J.S., Ju, W.E., Han, T.K., Choi, S.T., Lee, K.S.: Finite element analysis of a subsurface penny-shaped crack with crack-face contact and friction under a moving compressive load. J. Mech. Sci. Technol. 26(9), 2719–2726 (2012)CrossRefGoogle Scholar
  60. 60.
    Potočnik, R., Flašker, J., Glodež, S.: Numerical analysis of 3D subsurface crack propagation in large slewing bearing. Princ. Pract. Constr. Program. 2009, 1033–1040 (2013)Google Scholar
  61. 61.
    Deng, S., Han, X., Qin, X., Huang, S.: Subsurface crack propagation under rolling contact fatigue in bearing ring. Sci. China Technol. Sci. 56(10), 2422–2432 (2013)CrossRefGoogle Scholar
  62. 62.
    Deng, S., Qin, X., Huang, S.: A study on the effect of subsurface crack propagation on rolling contact fatigue in a bearing ring. J. Mech. Sci. Technol. 29(3), 1029–1038 (2015)CrossRefGoogle Scholar
  63. 63.
    Bomidi, J.A., Sadeghi, F.: Three-dimensional finite element elastic–plastic model for subsurface initiated spalling in rolling contacts. J. Tribol. 136(1), 011402 (2014)CrossRefGoogle Scholar
  64. 64.
    Paulson, N.R., Evans, N.E., Bomidi, J.A., Sadeghi, F., Evans, R.D., Mistry, K.K.: A finite element model for rolling contact fatigue of refurbished bearings. Tribol. Int. 85, 1–9 (2015)CrossRefGoogle Scholar
  65. 65.
    Walvekar, A.A., Paulson, N., Sadeghi, F., Weinzapfel, N., Correns, M., Dinkel, M.: A new approach for fatigue damage modeling of subsurface initiated spalling in large rolling contacts. J. Tribol. 139, 011101 (2017)CrossRefGoogle Scholar
  66. 66.
    Liu, J., Shi, Z.F., Shao, Y.M.: An investigation of a detection method for a subsurface crack in the outer race of a cylindrical roller bearing. Eksploatacja i Niezawodnosc Maint. Reliab. 19(2), 211–219 (2017)CrossRefGoogle Scholar
  67. 67.
    Liu, J., Shi, Z.F., Shao, Y.M., Shi, B.Y., Tian, Z.J., Chen, J.H.: A numerical study on vibrations of a roller bearing with a surface crack in the races. In: Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC2017, August 6–9, Cleveland, Ohio, USA (2017)Google Scholar
  68. 68.
    Jin, X.Z., Kang, N.Z.: A study on rolling bearing contact fatigue failure by macro-observation and micro-analysis. Wear Mater. 1, 205–213 (1989)Google Scholar
  69. 69.
    Ibrahim, R.A.: Handbook of Structural Life Assessment. Wiley, London (2017)CrossRefGoogle Scholar
  70. 70.
    Staverding, B.: Size effect for dynamic fracture. Mater. Sci. Eng. 7(6), 342–347 (1971)CrossRefGoogle Scholar
  71. 71.
    Gruzdkov, A.A., Sitnikova, E.V., Morozov, N.F., Pktrov, Y.V.: Thermal effect in dynamic yielding and fracture of metals and alloys. Math. Mech. Solids 14(1–2), 72–87 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Schmidt, R.M.: An examination of dynamic fracture under biaxial-strain conditions. Exp. Mech. 13(4), 163–167 (1973)CrossRefGoogle Scholar
  73. 73.
    Meyers, M.A., Aimone, C.T.: Dynamic fracture (spalling) of metals. Prog. Mater. Sci. 28(1), 1–96 (1983)CrossRefGoogle Scholar
  74. 74.
    Tallian, T.E.: Failure Atlas for Hertz Contact Machine Elements. ASME Press, New York (1992)Google Scholar
  75. 75.
    Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  76. 76.
    Olver, A.V.: The mechanism of rolling contact fatigue: an update. J. Eng. Tribol. 219(5), 313–330 (2005)Google Scholar
  77. 77.
    Halme, J., Andersson, P.: Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics-state of the art. J. Eng. Tribol. 224(4), 377–393 (2010)Google Scholar
  78. 78.
    Sadeghi, F., Jalalahmadi, B., Slack, T.S., Raje, N., Arakere, N.K.: A review of rolling contact fatigue. J. Tribol. 131(4), 041403 (2009)CrossRefGoogle Scholar
  79. 79.
    Harris, T.A., Kotzalas, M.N.: Essential Concepts of Bearing Technology. Taylor & Francis Group, CRC Press, Florida (2007)Google Scholar
  80. 80.
    Palmgren, A.: Ball and Roller Bearing Engineering. SKF Industries, Philadelphia (1945)Google Scholar
  81. 81.
    Washo, M.W.: A quick method for determining root causes and corrective actions of failed ball bearings. Lubr. Eng. 52(3), 206–213 (1996)Google Scholar
  82. 82.
    Volker, E., Martin, H.R.: Early detection of damage in rolling bearings. ISA Trans. 23(3), 27–32 (1984)Google Scholar
  83. 83.
    Scheithe, W.: Better bearing vibration analysis. Hydrocarb. Process 71, 57–64 (1992)Google Scholar
  84. 84.
    Gupta, A.K., Sharma, V.K.: Failure of ball bearings and its diagnosis by vibration analysis. Chem. Eng. World 24(5), 45–9 (1989)Google Scholar
  85. 85.
    Eschmann, P., Hasbargen, L.: Ball and Roller Bearings: Theory, Design, and Application. John Wiley and Sons, Chichester (1985). (No. 621.822 E7 1985) Google Scholar
  86. 86.
    McFadden, P.D., Smith, J.D.: Model for the vibration produced by a single point defect in a rolling element bearing. J. Sound Vib. 96(1), 69–82 (1984)CrossRefGoogle Scholar
  87. 87.
    McFadden, P.D., Smith, J.D.: The vibration produced by multiple point defects in a rolling element bearing. J. Sound Vib. 98(2), 263–273 (1985)CrossRefGoogle Scholar
  88. 88.
    Tandon, N., Choudhury, A.: An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect. J. Sound Vib. 205(3), 275–292 (1997)CrossRefGoogle Scholar
  89. 89.
    Wang, Y., Kootsookos, P.J.: Modeling of low shaft speed bearing faults for condition monitoring. Mech. Syst. Signal Process. 12(3), 415–426 (1998)CrossRefGoogle Scholar
  90. 90.
    Kiral, Z., Karagülle, H.: Simulation and analysis of vibration signals generated by rolling element bearing with defects. Tribol. Int. 36(9), 667–678 (2003)CrossRefGoogle Scholar
  91. 91.
    Kiral, Z., Karagülle, H.: Vibration analysis of rolling element bearings with various defects under the action of an unbalanced force. Mech. Syst. Signal Process. 20(8), 1967–1991 (2006)CrossRefGoogle Scholar
  92. 92.
    Sassi, S., Badri, B., Thomas, M.: A numerical model to predict damaged bearing vibrations. J. Vib. Control 13(11), 1603–1628 (2007)zbMATHCrossRefGoogle Scholar
  93. 93.
    Behzad, M., Bastami, A.R., Mba, D.: A new model for estimating vibrations generated in the defective rolling element bearings. J. Vib. Acoust. 133(4), 041011 (2011)CrossRefGoogle Scholar
  94. 94.
    Rafsanjani, A., Abbasion, S., Farshidianfar, A., Moeenfard, H.: Nonlinear dynamic modeling of surface defects in rolling element bearing systems. J. Sound Vib. 319(3), 1150–1174 (2009)CrossRefGoogle Scholar
  95. 95.
    Sopanen, J., Mikkola, A.: Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: theory. J. Multi-body Dyn. 217(3), 201–211 (2003)Google Scholar
  96. 96.
    Sopanen, J., Mikkola, A.: Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 2: implementation and results. J. Multi-body Dyn. 217(3), 213–223 (2003)Google Scholar
  97. 97.
    Cao, M., Xiao, J.: A comprehensive dynamic model of double-row spherical roller bearing—model development and case studies on surface defects, preloads, and radial clearance. Mech. Syst. Signal Process. 22(2), 467–489 (2008)CrossRefGoogle Scholar
  98. 98.
    Arslan, H., Aktürk, N.: An investigation of rolling element vibrations caused by local defects. J. Tribol. 130(4), 041101 (2008)CrossRefGoogle Scholar
  99. 99.
    Sawalhi, N., Randall, R.B.: Simulating gear and bearing interactions in the presence of faults: Part I: the combined gear bearing dynamic model and the simulation of localised bearing faults. Mech. Syst. Signal Process. 22(8), 1924–1951 (2008)CrossRefGoogle Scholar
  100. 100.
    Sawalhi, N., Randall, R.B.: Simulating gear and bearing interactions in the presence of faults: Part II: simulation of the vibrations produced by extended bearing faults. Mech. Syst. Signal Process. 22(8), 1952–1966 (2008)CrossRefGoogle Scholar
  101. 101.
    Patel, V.N., Tandon, N., Pandey, R.K.: A dynamic model for vibration studies of deep groove ball bearings considering single and multiple defects in races. J. Tribol. 132(4), 041101 (2010)CrossRefGoogle Scholar
  102. 102.
    Nakhaeinejad, M., Bryant, M.D.: Dynamic modeling of rolling element bearings with surface contact defects using bond graphs. J. Tribol. 133(1), 011102 (2011)CrossRefGoogle Scholar
  103. 103.
    Kankar, P.K., Sharma, S.C., Harsha, S.P.: Vibration based performance prediction of ball bearings caused by localized defects. Nonlinear Dyn. 69(3), 847–875 (2012)MathSciNetCrossRefGoogle Scholar
  104. 104.
    Patil, M.S., Mathew, J., Rajendrakumar, P.K., Desai, S.: A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing. Int. J. Mech. Sci. 52(9), 1193–1201 (2010)CrossRefGoogle Scholar
  105. 105.
    Tadina, M., Boltežar, M.: Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up. J. Sound Vib. 330(17), 4287–4301 (2011)CrossRefGoogle Scholar
  106. 106.
    Liu, J., Shao, Y., Lim, T.C.: Vibration analysis of ball bearings with a localized defect applying piecewise response function. Mech. Mach. Theory 56, 156–169 (2012)CrossRefGoogle Scholar
  107. 107.
    Liu, J., Shao, Y., Zuo, M.J.: The effects of the shape of localized defect in ball bearings on the vibration waveform. J. Multi-body Dyn. 227(3), 261–274 (2013)Google Scholar
  108. 108.
    Liu, J., Shao, Y., Lim, T.C.: Impulse vibration transmissibility characteristics in the presence of localized surface defects in deep groove ball bearing systems. J. Multi-body Dyn. 228(1), 62–81 (2014)Google Scholar
  109. 109.
    Shao, Y., Liu, J., Ye, J.: A new method to model a localized surface defect in a cylindrical roller-bearing dynamic simulation. J. Eng. Tribol. 228(2), 140–159 (2014)Google Scholar
  110. 110.
    Liu, J., Shao, Y., Zhu, W.D.: A new model for the relationship between vibration characteristics caused by the time-varying contact stiffness of a deep groove ball bearing and defect Sizes. J. Tribol. 137(3), 031101 (2015)CrossRefGoogle Scholar
  111. 111.
    Liu, J., Shao, Y.: A new dynamic model for vibration analysis of a ball bearing due to a localized surface defect considering edge topographies. Nonlinear Dyn. 79(2), 1329–1351 (2015)CrossRefGoogle Scholar
  112. 112.
    Liu, J., Shao, Y.: A numerical investigation of effects of defect edge discontinuities on contact forces and vibrations for a defective roller bearing. J. Multi-body Dyn. 230(4), 387–400 (2016)Google Scholar
  113. 113.
    Liu, J., Shao, Y.M.: An improved analytical model for a lubricated roller bearing including a localized defect with different edge shapes. J. Vib. Control (2017).  https://doi.org/10.1177/1077546317716315 CrossRefGoogle Scholar
  114. 114.
    Liu, J., Shi, Z., Shao, Y.: A numerical investigation of the plastic deformation at the spall edge for a roller bearing. Eng. Fail. Anal. 80, 263–271 (2017)CrossRefGoogle Scholar
  115. 115.
    Liu, J., Shi, Z., Shao, Y., Xiao, H.: Effects of spall edge profiles on the edge plastic deformation for a roller bearing. J. Mater. Des. Appl. (2017).  https://doi.org/10.1177/1464420717710276 CrossRefGoogle Scholar
  116. 116.
    Liu, J., Shao, Y.: Vibration modelling for a rotor-bearing-housing system including a localized fault. J. Multi-Body Dyn. (2017).  https://doi.org/10.1177/1464419317738427 CrossRefGoogle Scholar
  117. 117.
    Cao, H., Niu, L., He, Z.: Method for vibration response simulation and sensor placement optimization of a machine tool spindle system with a bearing defect. Sensors 12(7), 8732–8754 (2012)CrossRefGoogle Scholar
  118. 118.
    Niu, L., Cao, H., He, Z., Li, Y.: Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways. J. Manuf. Sci. Eng. 136(4), 041015 (2014)CrossRefGoogle Scholar
  119. 119.
    Niu, L., Cao, H., He, Z., Li, Y.: A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects. J. Sound Vib. 357, 207–232 (2015)CrossRefGoogle Scholar
  120. 120.
    Yuan, X., Zhu, Y., Zhang, Y.: Multi-body vibration modelling of ball bearing-rotor system considering single and compound multi-defects. J. Multi-body Dyn. 228(2), 199–212 (2014)Google Scholar
  121. 121.
    Kulkarni, P.G., Sahasrabudhe, A.D.: A dynamic model of ball bearing for simulating localized defects on outer race using cubic hermite spline. J. Mech. Sci. Technol. 28(9), 3433–3442 (2014)CrossRefGoogle Scholar
  122. 122.
    Wang, F., Jing, M., Yi, J., Dong, G., Liu, H., Ji, B.: Dynamic modelling for vibration analysis of a cylindrical roller bearing due to localized defects on raceways. J. Multi-body Dyn. 229(1), 39–64 (2015)Google Scholar
  123. 123.
    Li, Z., Zhou, Q., An, Q., Wang, Z.: Dynamic analysis of an unbalanced rotor-water pump-bearing system considering varying compliance effect and localized defects on bearing races. J. Multi-body Dyn. 229(4), 424–438 (2015)Google Scholar
  124. 124.
    Ahmadi, A.M., Petersen, D., Howard, C.Q.: A nonlinear dynamic vibration model of defective bearings—the importance of modelling the finite size of rolling elements. Mech. Syst. Signal Process. 52–53, 309–326 (2015)CrossRefGoogle Scholar
  125. 125.
    Petersen, D., Howard, C.Q., Prime, Z.: Varying stiffness and load distributions in defective ball bearings: analytical formulation and application to defect size estimation. J. Sound Vib. 337, 284–300 (2015)CrossRefGoogle Scholar
  126. 126.
    Moazenahmadi, A., Howard, C.Q.: A defect size estimation method based on operational speed and path of rolling elements in defective bearings. J. Sound Vib. 385, 138–148 (2016)CrossRefGoogle Scholar
  127. 127.
    Patel, U.A., Upadhyay, S.H.: An analytical model (7 D.O.F.) for the prediction of the vibration response of cylindrical roller element bearings due to a combined localized defect. J. Multi-body Dyn. 229(4), 383–406 (2015)Google Scholar
  128. 128.
    Patel, U.A., Upadhyay, S.H.: Nonlinear dynamic response of cylindrical roller bearing-rotor system with 9 degree of freedom model having a combined localized defect at inner-outer races of bearing. Tribol. Trans. (2016).  https://doi.org/10.1080/10402004.2016.1163759 CrossRefGoogle Scholar
  129. 129.
    Ghalamchi, B., Sopanen, J., Mikkola, A.: Modeling and dynamic analysis of spherical roller bearing with localized defects: analytical formulation to calculate defect depth and stiffness. Shock Vib. 2016, 1–11 (2016)CrossRefGoogle Scholar
  130. 130.
    Cui, L., Zhang, Y., Zhang, F., Zhang, J., Lee, S.: Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis. J. Sound Vib. 364, 67–76 (2016)CrossRefGoogle Scholar
  131. 131.
    Ding, W.M., Zhang, Z.N., Zhao, F.G.: Vibration response of ball bearings with different defect sizes in the outer raceway: simulation with a 3D finite element model. In: The 14th IFToMM World Congress, Taipei, Taiwan, October 25–30 (2015)Google Scholar
  132. 132.
    Nabhan, A., Nouby, M., Sami, A.M., Mousa, M.O.: Vibration analysis of deep groove ball bearing with outer race defect using ABAQUS. J. Low Freq. Noise Vib. Act. Control 35(4), 312–325 (2016)CrossRefGoogle Scholar
  133. 133.
    Khanam, S., Dutt, J.K., Tandon, N.: Impact force based model for bearing local fault identification. J. Vib. Acoust. 137(5), 051002 (2015)CrossRefGoogle Scholar
  134. 134.
    Khanam, S., Tandon, N., Dutt, J.K.: Multi-event excitation force model for inner race defect in a rolling element bearing. J. Tribol. 138(1), 011106 (2016)CrossRefGoogle Scholar
  135. 135.
    Leturiondo, U., Salgado, O., Galar, D.: Multi-body modelling of rolling element bearings and performance evaluation with localised damage. Eksploatacja I Niezawodnosc-Maint. Reliab. 18(4), 638–648 (2016)CrossRefGoogle Scholar
  136. 136.
    Leturiondo, U., Salgado, O., Galar, D.: Methodology for the physics-based modelling of multiple rolling element bearing configurations. J. Multi-body Dyn. 231, 194–212 (2016).  https://doi.org/10.1177/1464419316660930 CrossRefGoogle Scholar
  137. 137.
    Xu, Y., Di, L., Zhou, J., Jin, C., Guo, Q.: Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis. ISA Trans. 61, 221–228 (2016)CrossRefGoogle Scholar
  138. 138.
    Moustafa, W.S., Cousinard, O., Bolaers, F., Sghir, K.A., Dron, J.P.: Low speed bearings fault detection and size estimation using instantaneous angular speed. J. Vib. Control 22(15), 3413–3425 (2016)CrossRefGoogle Scholar
  139. 139.
    Kogan, G., Bortman, J., Klein, R.: A new model for spall-rolling-element interaction. Nonlinear Dyn. 87, 219–236 (2017)CrossRefGoogle Scholar
  140. 140.
    Niu, L., Cao, H., Xiong, X.: Dynamic modeling and vibration response simulations of angular contact ball bearings with ball defects considering the three-dimensional motion of balls. Tribol. Int. 109, 26–39 (2017)CrossRefGoogle Scholar
  141. 141.
    Liu, J., Shi, Z., Shao, Y.M.: An analytical model to predict vibrations of a cylindrical roller bearing with a localized surface defect. Nonlinear Dyn. 89, 2085–2102 (2017)CrossRefGoogle Scholar
  142. 142.
    Liu, J., Shao, Y., Qin, X.: Dynamic simulation for a tapered roller bearing considering a localized surface fault on the rib of the inner race. J. Multi-body Dyn. 231(4), 670–683 (2017)Google Scholar
  143. 143.
    Liu, J., Shao, Y.: Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges. J. Sound Vib. 398(23), 84–102 (2017)CrossRefGoogle Scholar
  144. 144.
    Tallian, T.E.: Prediction of rolling contact fatigue life in contaminated lubricant: Part I—Mathematical model. J. Lubr. Technol. 98(2), 251–257 (1976)CrossRefGoogle Scholar
  145. 145.
    Tallian, T.E.: Prediction of rolling contact fatigue life in contaminated lubricant: Part II—Experimental. J. Lubr. Technol. 98(2), 384–392 (1976)CrossRefGoogle Scholar
  146. 146.
    Ville, F., Nelias, D.: Influence of the nature and size of solid particles on the indentation features in EHL contacts. Tribol. Ser. 34, 399–409 (1998)CrossRefGoogle Scholar
  147. 147.
    Ville, F., Nelias, D.: Early fatigue failure due to dents in EHL contacts. Tribol. Trans. 42(4), 795–800 (1999)CrossRefGoogle Scholar
  148. 148.
    Xu, G., Sadeghi, F.: Spall initiation and propagation due to debris denting. Wear 201(1), 106–116 (1996)CrossRefGoogle Scholar
  149. 149.
    Xu, G., Sadeghi, F., Cogdell, J.D.: Debris denting effects on elastohydrodynamic lubricated contacts. J. Tribol. 119(3), 579–587 (1997)CrossRefGoogle Scholar
  150. 150.
    Xu, G., Sadeghi, F., Hoeprich, M.R.: Residual stresses due to debris effects in ehl contacts. Tribol. Trans. 40(4), 613–620 (1997)CrossRefGoogle Scholar
  151. 151.
    Xu, G., Sadeghi, F., Hoeprich, M.R.: Dent initiated spall formation in EHL rolling/sliding contact. J. Tribol. 120(3), 453–462 (1998)CrossRefGoogle Scholar
  152. 152.
    Kang, Y.S.: Debris Effects and Denting Process on Lubricated Contacts. Ph.D. Thesis, Purdue University, West Lafayette (2004)Google Scholar
  153. 153.
    Li, D., Kang, Y.S.: Simulation and experimental validation of tapered roller bearing vibration induced by geometrical imperfection on cup raceway. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 17–20, Buffalo, New York, USA. American Society of Mechanical Engineers, V008T11A059 (2014)Google Scholar
  154. 154.
    Venner, C.H., Lubrecht, A.A.: Transient analysis of surface features in an EHL line contact in the case of sliding. J. Tribol. 116(2), 186–193 (1994)CrossRefGoogle Scholar
  155. 155.
    Venner, C.H., Lubrecht, A.A.: Numerical simulation of a transverse ridge in a circular EHL contact under rolling/sliding. J. Tribol. 116(4), 751–761 (1994)CrossRefGoogle Scholar
  156. 156.
    Nélias, D., Ville, F.: Detrimental effects of debris dents on rolling contact fatigue. J. Tribol. 122(1), 55–64 (2000)CrossRefGoogle Scholar
  157. 157.
    Ashtekar, A., Sadeghi, F., Stacke, L.: A new approach to modeling surface defects in bearing dynamics simulations. J. Tribol. 130(4), 041103 (2008)CrossRefGoogle Scholar
  158. 158.
    Ashtekar, A., Sadeghi, F., Stacke, L.: Surface defects effects on bearing dynamics. J. Eng. Tribol. 224(1), 25–35 (2010)Google Scholar
  159. 159.
    Antaluca, E., Nélias, D.: Contact fatigue analysis of a dented surface in a dry elastic–plastic circular point contact. Tribol. Lett. 29(2), 139–153 (2008)CrossRefGoogle Scholar
  160. 160.
    Warhadpande, A., Sadeghi, F.: Effects of surface defects on rolling contact fatigue of heavily loaded lubricated contacts. J. Eng. Tribol. 224(10), 1061–1077 (2010)Google Scholar
  161. 161.
    Elthalji, I., Jantunen, E.: Fault analysis of the wear fault development in rolling bearings. Eng. Fail. Anal. 57, 470–482 (2015)CrossRefGoogle Scholar
  162. 162.
    Elthalji, I., Jantunen, E.: Dynamic modelling of wear evolution in rolling bearings. Tribol. Int. 84, 90–99 (2015)CrossRefGoogle Scholar
  163. 163.
    Liu, J., Shi, Z., Shao, Y.M.: A theoretical study on vibrations of a ball bearing caused by a dent on the races. Eng. Fail. Anal. 83, 220–229 (2017)CrossRefGoogle Scholar
  164. 164.
    Singh, S., Köpke, U.G., Howard, C.Q., Petersen, D.: Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model. J. Sound Vib. 333(21), 5356–5377 (2014)CrossRefGoogle Scholar
  165. 165.
    Epps, I.K.: An Investigation into Vibrations Excited by Discrete Faults in Rolling Element Bearings. Ph.D. Thesis, School of Mechanical Engineering, The University of Canterbury, Christchurch (1991)Google Scholar
  166. 166.
    Epps, I. K. McCallion, H.: An Investigation into the Characteristics of Vibration Excited by Discrete Faults in Rolling Element Bearings. Fourth Annual Vibrations Association of New Zealand Conference, Christchurch (1993)Google Scholar
  167. 167.
    Sawalhi, N., Randall, R.B.: Vibration response of spalled rolling element bearings: observations, simulations and signal processing techniques to track the spall size. Mech. Syst. Signal Process. 25(3), 846–870 (2011)CrossRefGoogle Scholar
  168. 168.
    Baillie, D.C., Mathew, J.: A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 10(1), 1–17 (1996)CrossRefGoogle Scholar
  169. 169.
    Junsheng, C., Dejie, Y., Yu, Y.: A fault diagnosis approach for roller bearings based on EMD method and AR model. Mech. Syst. Signal Process. 20(2), 350–362 (2006)CrossRefGoogle Scholar
  170. 170.
    Fourgeau, J.M.G.A.E., Giard, D.: Wave propagation and sampling theory—Part II: Sampling theory and complex waves. Geophysics 47(2), 222–236 (1982)CrossRefGoogle Scholar
  171. 171.
    Lin, J., Qu, L.: Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. J. Sound Vib. 234(1), 135–148 (2000)CrossRefGoogle Scholar
  172. 172.
    Thrane, N.: Hilbert transform. In: Technical Review 3, Brüel and Kjær (1984)Google Scholar
  173. 173.
    Feldman, M.: Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25(3), 735–802 (2011)CrossRefGoogle Scholar
  174. 174.
    Bogert, B.P., Healy, M.J.R., Tuckey, J.W.: The frequency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum and shaft cracking. In: Rosenblatt, M. (eds) Proceedings of Symposium on Time Series Analysis, pp. 209–243. Wiley, NY (1963)Google Scholar
  175. 175.
    Childers, D.G., Skinner, D.P., Kemerait, R.C.: The cepstrum: a guide to processing. Proc. IEEE 65(10), 1428–1443 (1977)CrossRefGoogle Scholar
  176. 176.
    Randall, R.B., Hee, J.: Cepstrum analysis. In: Technical Review 3, Brüel and Kjær (1981)Google Scholar
  177. 177.
    Zhao, S., Liang, L., Xu, G., Wang, J., Zhang, W.: Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method. Mech. Syst. Signal Process. 40(1), 154–177 (2013)CrossRefGoogle Scholar
  178. 178.
    Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos Interdiscip. J. Nonlinear Sci. 5(1), 110–117 (1995)MathSciNetCrossRefGoogle Scholar
  179. 179.
    Yu, Y., Junsheng, C.: A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294(1), 269–277 (2006)CrossRefGoogle Scholar
  180. 180.
    Yan, R., Gao, R.X.: Approximate entropy as a diagnostic tool for machine health monitoring. Mech. Syst. Signal Process. 21(2), 824–839 (2007)MathSciNetCrossRefGoogle Scholar
  181. 181.
    He, Y., Zhang, X.: Approximate entropy analysis of the acoustic emission from defects in rolling element bearings. J. Vib. Acoust. 134(6), 061012 (2012)CrossRefGoogle Scholar
  182. 182.
    Kumar, R., Singh, M.: Outer race defect width measurement in taper roller bearing using discrete wavelet transform of vibration signal. Measurement 46(1), 537–545 (2013)CrossRefGoogle Scholar
  183. 183.
    Singh, M., Yadav, R.K., Kumar, R.: Discrete wavelet transform based measurement of inner race defect width in taper roller bearing. Mapan 28(1), 17–23 (2013)CrossRefGoogle Scholar
  184. 184.
    Khanam, S., Tandon, N., Dutt, J.K.: Fault size estimation in the outer race of ball bearing using discrete wavelet transform of the vibration signal. Proc. Technol. 14, 12–19 (2014)CrossRefGoogle Scholar
  185. 185.
    Jena, D.P., Panigrahi, S.N.: Precise measurement of defect width in tapered roller bearing using vibration signal. Measurement 55, 39–50 (2014)CrossRefGoogle Scholar
  186. 186.
    Kumar, A., Kumar, R.: Enhancing weak defect features using undecimated and adaptive wavelet transform for estimation of roller defect size in a bearing. Tribol. Trans. (2016).  https://doi.org/10.1080/10402004.2016.1213343 CrossRefGoogle Scholar
  187. 187.
    Wardle, F.P., Poon, S.Y.: Rolling bearing noise–cause and cure. Chart. Mech. Eng. 30, 36–40 (1983)Google Scholar
  188. 188.
    Sunnersjö, C.S.: Rolling bearing vibrations—the effects of geometrical imperfections and wear. J. Sound Vib. 98(4), 455–474 (1985)CrossRefGoogle Scholar
  189. 189.
    Ost, W., De Baets, P.: Failure analysis of the deep groove ball bearings of an electric motor. Eng. Fail. Anal. 12(5), 772–783 (2005)CrossRefGoogle Scholar
  190. 190.
    Liu, J., Shao, Y.: Vibration modelling of nonuniform surface waviness in a lubricated roller bearing. J. Vib. Control 23(7), 1115–1132 (2017)CrossRefGoogle Scholar
  191. 191.
    Tallian, T.E., Gustafsson, O.G.: Progress in rolling bearing vibration research and control. ASLE Trans. 8(3), 195–207 (1965)CrossRefGoogle Scholar
  192. 192.
    Meyer, L.D., Ahlgren, F.F., Weichbrodt, B.: An analytic model for ball bearing vibrations to predict vibration response to distributed defects. J. Mech. Des. 102(2), 205–210 (1980)CrossRefGoogle Scholar
  193. 193.
    Rahnejat, H., Gohar, R.: The vibrations of radial ball bearings. J. Mech. Eng. Sci. 199(3), 181–193 (1985)CrossRefGoogle Scholar
  194. 194.
    Wardle, F.P.: Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearings Part 1: theory. J. Mech. Eng. Sci. 202(5), 305–312 (1988)CrossRefGoogle Scholar
  195. 195.
    Wardle, F.P.: Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearings Part 2: experimental Validation. J. Mech. Eng. Sci. 202(5), 313–319 (1988)CrossRefGoogle Scholar
  196. 196.
    Hine, M.J.: Absolute ball bearing wear measurements from SSME turbopump dynamic signals. J. Sound Vib. 128(2), 321–331 (1989)CrossRefGoogle Scholar
  197. 197.
    Yhland, E.: A linear theory of vibrations caused by ball bearings with form errors operating at moderate speed. J. Tribol. 114(2), 348–359 (1992)CrossRefGoogle Scholar
  198. 198.
    Su, Y., Sheen, Y.: On the detectability of roller bearing damage by frequency analysis. J. Mech. Eng. Sci. 207(1), 23–32 (1993)CrossRefGoogle Scholar
  199. 199.
    Ono, K., Takahasi, K.: Theoretical analysis of shaft vibration supported by a ball bearing with small sinusoidal waviness. IEEE Trans. Magn. 32(3), 1709–1714 (1996)CrossRefGoogle Scholar
  200. 200.
    Ohta, H., Sugimoto, N.: Vibration characteristics of tapered roller bearings. J. Sound Vib. 190(2), 137–147 (1996)CrossRefGoogle Scholar
  201. 201.
    Choudhury, A., Tandon, N.: A theoretical model to predict vibration response of rolling bearings to distributed defects under radial load. J. Vib. Acoust. 120(1), 214–220 (1998)CrossRefGoogle Scholar
  202. 202.
    Tandon, N., Choudhury, A.: A theoretical model to predict the vibration response of rolling bearings in a rotor bearing system to distributed defects under radial load. J. Tribol. 122(3), 609–615 (2000)CrossRefGoogle Scholar
  203. 203.
    Lynagh, N., Rahnejat, H., Ebrahimi, M., Aini, R.: Bearing induced vibration in precision high speed routing spindles. Int. J. Mach. Tools Manuf. 40(4), 561–577 (2000)CrossRefGoogle Scholar
  204. 204.
    Wensing, J.A., Van Nijen, G.C.: The dynamic behaviour of a system that includes a rolling bearing. J. Eng. Tribol. 215(6), 509–518 (2001)Google Scholar
  205. 205.
    Jang, G.H., Jeong, S.W.: Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. J. Tribol. 124(1), 82–90 (2002)CrossRefGoogle Scholar
  206. 206.
    Jang, G.H., Jeong, S.W.: Analysis of a ball bearing with waviness considering the centrifugal force and gyroscopic moment of the ball. J. Tribol. 125(3), 487–498 (2003)CrossRefGoogle Scholar
  207. 207.
    Jang, G.H., Jeong, S.W.: Stability analysis of a rotating system due to the effect of ball bearing waviness. J. Tribol. 125(1), 91–101 (2003)CrossRefGoogle Scholar
  208. 208.
    Jang, G., Jeong, S.W.: Vibration analysis of a rotating system due to the effect of ball bearing waviness. J. Sound Vib. 269(3), 709–726 (2004)CrossRefGoogle Scholar
  209. 209.
    Harsha, S.P., Kankar, P.K.: Stability analysis of a rotor bearing system due to surface waviness and number of balls. Int. J. Mech. Sci. 46(7), 1057–1081 (2004)zbMATHCrossRefGoogle Scholar
  210. 210.
    Harsha, S.P., Sandeep, K., Prakash, R.: Nonlinear dynamic response of a rotor bearing system due to surface waviness. Nonlinear Dyn. 37(2), 91–114 (2004)zbMATHCrossRefGoogle Scholar
  211. 211.
    Harsha, S.P., Sandeep, K., Prakash, R.: Non-linear dynamic behaviors of rolling element bearings due to surface waviness. J. Sound Vib. 272(3), 557–580 (2004)CrossRefGoogle Scholar
  212. 212.
    Harsha, S.P.: Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings. J. Sound Vib. 290(1), 65–100 (2006)CrossRefGoogle Scholar
  213. 213.
    Changqing, B., Qingyu, X.: Dynamic model of ball bearings with internal clearance and waviness. J. Sound Vib. 294(1), 23–48 (2006)CrossRefGoogle Scholar
  214. 214.
    Liqin, W., Li, C., Dezhi, Z., Le, G.: Nonlinear dynamics behaviors of a rotor roller bearing system with radial clearances and waviness considered. Chin. J. Aeronaut. 21(1), 86–96 (2008)CrossRefGoogle Scholar
  215. 215.
    Kankar, P.K., Sharma, S.C., Harsha, S.P.: Nonlinear vibration signature analysis of a high speed rotor bearing system due to race imperfection. J. Comput. Nonlinear Dyn. 7(1), 011014 (2012)CrossRefGoogle Scholar
  216. 216.
    Babu, C.K., Tandon, N., Pandey, R.K.: Vibration modeling of a rigid rotor supported on the lubricated angular contact ball bearings considering six degrees of freedom and waviness on balls and races. J. Vib. Acoust. 134(1), 011006 (2012)CrossRefGoogle Scholar
  217. 217.
    Hwang, P., Nguyen, V.T.: Dynamic model to predict effect of race waviness on vibrations associated with deep-groove ball bearing. J. Korean Soc. Tribol. Lubr. Eng. 30(1), 64–70 (2014)Google Scholar
  218. 218.
    Xu, L.X., Li, Y.G.: Modeling of a deep-groove ball bearing with waviness defects in planar multibody system. Multibody Syst. Dyn. 33(3), 229–258 (2015)MathSciNetCrossRefGoogle Scholar
  219. 219.
    Liu, W., Zhang, Y., Feng, Z., Zhao, J., Wang, D.: A study on waviness induced vibration of ball bearings based on signal coherence theory. J. Sound Vib. 333(23), 6107–6120 (2014)CrossRefGoogle Scholar
  220. 220.
    Liu, J., Wu, H., Shao, Y.: A comparative study of surface waviness models for predicting vibrations of a ball bearing. Sci. China Technol. Sci. 60(12), 1841–1852 (2017)CrossRefGoogle Scholar
  221. 221.
    Zhang, X., Han, Q., Peng, Z., Chu, F.: A comprehensive dynamic model to investigate the stability problems of the rotor-bearing system due to multiple excitations. Mech. Syst. Signal Process. 70–71, 1171–1192 (2016)CrossRefGoogle Scholar
  222. 222.
    Wang, H., Han, Q., Zhou, D.: Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings. Mech. Syst. Signal Process. 85, 16–40 (2017)CrossRefGoogle Scholar
  223. 223.
    Dolenc, B., Boskoski, P., Juricic, Đ: Distributed bearing fault diagnosis based on vibration analysis. Mech. Syst. Signal Process. 66–67, 521–532 (2016)Google Scholar
  224. 224.
    Aithal, S., Prasad, N.S., Shunmugam, M.S., Chellapandi, P.: Effect of manufacturing errors on load distribution in large diameter slewing bearings of fast breeder reactor rotatable plugs. J. Mech. Eng. Sci. 230(9), 1449–1460 (2016)CrossRefGoogle Scholar
  225. 225.
    Xing, Y., Xu, H., Pei, S., Zhang, X.F., Chang, W.: Mechanical analysis of spherical roller bearings due to misalignments between inner and outer rings. J. Mech. Eng. Sci. 231(17), 3250–3262 (2017)CrossRefGoogle Scholar
  226. 226.
    Yang, Z., Hong, J., Zhang, J., Wang, M.Y.: Research on the rotational accuracy measurement of an aerostatic spindle in a rolling bearing performance analysis instrument. Int. J. Precis. Eng. Manuf. 15(7), 1293–1302 (2014)CrossRefGoogle Scholar
  227. 227.
    Noguchi, S., Ono, K.: Reduction of NRRO in ball bearings for HDD spindle motors. Precis. Eng. 28(4), 409–418 (2004)CrossRefGoogle Scholar
  228. 228.
    Tamura, A.: On the vibrations caused by ball diameter differences in a ball bearing. Bull. JSME 11(44), 229–234 (1968)CrossRefGoogle Scholar
  229. 229.
    Gupta, P.K.: On the geometrical imperfections in cylindrical roller bearings. J. Tribol. 110(1), 13–18 (1988)CrossRefGoogle Scholar
  230. 230.
    Aktark, N., Gohar, R.: The effect of ball size variation on vibrations associated with ball-bearings. J. Eng. Tribol. 212(2), 101–110 (1998)Google Scholar
  231. 231.
    Harsha, S.P.: The effect of ball size variation on nonlinear vibrations associated with ball bearings. J. Multi-body Dyn. 218(4), 191–210 (2004)Google Scholar
  232. 232.
    Vafaei, S., Rahnejat, H.: Indicated repeatable runout with wavelet decomposition (IRR-WD) for effective determination of bearing-induced vibration. J. Sound Vib. 260(1), 67–82 (2003)CrossRefGoogle Scholar
  233. 233.
    Noguchi, S., Hiruma, K., Kawa, H., Kanada, T.: The influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution. Precis. Eng. 29(1), 11–18 (2005)CrossRefGoogle Scholar
  234. 234.
    Upadhyay, S.H., Jain, S.C., Harsha, S.P.: Non-linear vibration signature analysis of a high-speed rotating shaft due to ball size variations and varying number of balls. J. Multi-body Dyn. 223(2), 83–105 (2009)Google Scholar
  235. 235.
    Chen, G., Mao, F., Wang, B.: Effects of off-sized cylindrical rollers on the static load distribution in a cylinder roller bearing. J. Eng. Tribol. 226(8), 687–696 (2012)Google Scholar
  236. 236.
    Chen, G., Wang, B., Mao, F.: Effects of raceway roundness and roller diameter errors on clearance and runout of a cylindrical roller bearing. J. Eng. Tribol. 227(3), 275–285 (2013)Google Scholar
  237. 237.
    Zhou, X., Xu, H., Xiong, X., Wang, L.: Load distribution model of deep groove ball bearing with ball off size. In: Assembly and Manufacturing (ISAM), 2013 IEEE International Symposium, pp. 58–63. IEEE (2013, July)Google Scholar
  238. 238.
    Yu, S., Wang, D., Dong, H., Wang, B.: A new method for determining load distributions among rollers of bearing with manufacturing errors. J. Mech. Eng. Sci. 227(11), 2402–2415 (2013)CrossRefGoogle Scholar
  239. 239.
    Ma, F., Ji, P., Li, Z., Wu, B., An, Q.: Influences of off-sized rollers on mechanical performance of spherical roller bearings. J. Multi-body Dyn. 229(4), 344–356 (2015)Google Scholar
  240. 240.
    Ji, P., Gao, Y., Ma, F., An, Q.: Influences of roller diameter error on contact stress for cylindrical roller bearing. J. Eng. Tribol. 229(6), 689–697 (2015)Google Scholar
  241. 241.
    Tong, V., Hong, S.: Characteristics of tapered roller bearing with geometric error. Int. J. Precis. Eng. Manuf. 16(13), 2709–2716 (2015)CrossRefGoogle Scholar
  242. 242.
    Tong, V.C., Hong, S.W.: Study on the stiffness and fatigue life of tapered roller bearings with roller diameter error. J. Eng. Tribol. (2016).  https://doi.org/10.1177/1350650116649889 CrossRefGoogle Scholar
  243. 243.
    Liu, J., Yan, Z.L., Shao, Y.M.: An investigation for the friction torque of a needle roller bearing with the roundness error. Mech. Mach. Theory 121, 259–272 (2018)CrossRefGoogle Scholar
  244. 244.
    Harris, T.A.: Effect of misalignment on fatigue life of cylindrical roller bearings having crowned rolling members. J. Tribol. 91, 294–300 (1968)Google Scholar
  245. 245.
    Xing, Y., Xu, H., Pei, S., Zhang, X., Chang, W.: Mechanical analysis of spherical roller bearings due to misalignments between inner and outer rings. J. Mech. Eng. Sci. (2016).  https://doi.org/10.1177/0954406216643108 CrossRefGoogle Scholar
  246. 246.
    Zantopulos, H.: The effect of misalignment on the fatigue life of tapered roller bearings. J. Lubr. Technol. 94(2), 181–186 (1972)CrossRefGoogle Scholar
  247. 247.
    Liu, J.Y.: The effect of misalignment on the life of high speed cylindrical roller bearings. J. Lubr. Technol. 93(1), 60–68 (1971)CrossRefGoogle Scholar
  248. 248.
    Liu, J.Y.: Analysis of tapered roller bearings considering high speed and combined loading. J. Lubr. Technol. 98(4), 564–572 (1976)CrossRefGoogle Scholar
  249. 249.
    Andréason, S.: Load distribution in a taper roller bearing arrangement considering misalignment. Tribology 6(3), 84–92 (1973)CrossRefGoogle Scholar
  250. 250.
    De Mul, J.M., Vree, J.M., Maas, D.A.: Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction—Part II: application to roller bearings and experimental verification. J. Tribol. 111(1), 149–155 (1989)CrossRefGoogle Scholar
  251. 251.
    Simon, G.: Prediction of vibration behaviour of large turbo-machinery on elastic foundations due to unbalance and coupling misalignment. J. Mech. Eng. Sci. 206(1), 29–39 (1992)Google Scholar
  252. 252.
    Lim, T.C., Singh, R.: Vibration transmission through rolling element bearings, Part V: effect of distributed contact load on roller bearing stiffness matrix. J. Sound Vib. 169(4), 547–553 (1994)zbMATHCrossRefGoogle Scholar
  253. 253.
    Creju, S., Bercea, I., Mitu, N.: A dynamic analysis of tapered roller bearing under fully flooded conditions Part 1: theoretical formulation. Wear 188(1), 1–10 (1995)CrossRefGoogle Scholar
  254. 254.
    Lee, Y.S., Lee, C.W.: Modelling and vibration analysis of misaligned rotor-ball bearing systems. J. Sound Vib. 224(1), 17–32 (1999)CrossRefGoogle Scholar
  255. 255.
    Nelias, D., Bercea, I.: A unified and simplified treatment of the non-linear equilibrium problem of double-row rolling bearings—Part 2: application to taper rolling bearings supporting a flexible shaft. J. Eng. Tribol. 217(3), 213–221 (2003)Google Scholar
  256. 256.
    Liao, N.T., Lin, J.F.: An analysis of misaligned single-row angular-contact ball bearing. J. Mech. Des. 126(2), 370–374 (2004)CrossRefGoogle Scholar
  257. 257.
    Patel, T.H., Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325(3), 609–628 (2009)CrossRefGoogle Scholar
  258. 258.
    Park, T.J.: Effect of roller profile and misalignment in EHL of finite line contacts. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, pp. 395-401. ASME (2010, January)Google Scholar
  259. 259.
    Kabus, S., Hansen, M.R., Mouritsen, O.Ø.: A new quasi-static multi-degree of freedom tapered roller bearing model to accurately consider non-Hertzian contact pressures in time-domain simulations. J. Multi-body Dyn. 228, 111–125 (2014)Google Scholar
  260. 260.
    Ye, Z.H., Wang, L.Q.: Effects of axial misalignment of rings on the dynamic characteristics of cylindrical roller bearings. J. Eng. Tribol. (2015).  https://doi.org/10.1177/1350650115606945 CrossRefGoogle Scholar
  261. 261.
    Tong, V.C., Hong, S.W.: Fatigue life of tapered roller bearing subject to angular misalignment. J. Mech. Eng. Sci. (2015).  https://doi.org/10.1177/0954406215578706 CrossRefGoogle Scholar
  262. 262.
    Tong, V., Hong, S.: The effect of angular misalignment on the running torques of tapered roller bearings. Tribol. Int. 95, 76–85 (2016)CrossRefGoogle Scholar
  263. 263.
    Tong, V., Hong, S.: The effect of angular misalignment on the stiffness characteristics of tapered roller bearings. J. Mech. Eng. Sci. (2016).  https://doi.org/10.1177/0954406215621098 CrossRefGoogle Scholar
  264. 264.
    Gupta, P.K.: Transient ball motion and skid in ball bearings. J. Lubr. Technol. 97(2), 261–269 (1975)CrossRefGoogle Scholar
  265. 265.
    Fukata, S., Gad, E.H., Kondou, T., Ayabe, T., Tamura, H.: On the radial vibration of ball bearings: computer simulation. Bull. JSME 28(239), 899–904 (1985)CrossRefGoogle Scholar
  266. 266.
    Wijnant, Y.H., Wensing, J.A., Nijen, G.V.: The influence of lubrication on the dynamic behaviour of ball bearings. J. Sound Vib. 222(4), 579–596 (1999)CrossRefGoogle Scholar
  267. 267.
    Tiwari, R., Vyas, N.S.: Estimation of non-linear stiffness parameters of rolling element bearings from random response of rotor-bearing systems. J. Sound Vib. 187(2), 229–239 (1995)CrossRefGoogle Scholar
  268. 268.
    Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238(5), 757–779 (2000)CrossRefGoogle Scholar
  269. 269.
    Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238(5), 723–756 (2000)CrossRefGoogle Scholar
  270. 270.
    Massi, F., Rocchi, J., Culla, A., Berthier, Y.: Coupling system dynamics and contact behaviour: modelling bearings subjected to environmental induced vibrations and ‘false brinelling’ degradation. Mech. Syst. Signal Process. 24(4), 1068–1080 (2010)CrossRefGoogle Scholar
  271. 271.
    Hou, L., Chen, Y., Fu, Y., Chen, H., Lu, Z., Liu, Z.: Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 2531–2551 (2017)CrossRefGoogle Scholar
  272. 272.
    Hou, L., Chen, Y., Fu, Y., Chen, H.: Nonlinear vibration of dual-rotor system with surface waviness in inter-shaft bearing. J. Aerosp. Power 32(3), 714–722 (2017)Google Scholar
  273. 273.
    Purohit, R.K., Purohit, K.: Dynamic analysis of ball bearings with effect of preload and number of balls. Int. J. Appl. Mech. Eng. 11(1), 77–91 (2006)zbMATHGoogle Scholar
  274. 274.
    Nakhaeinejad, M.: Fault Detection and Model-Based Diagnostics in Nonlinear Dynamic Systems. University of Texas, Austin (2010)Google Scholar
  275. 275.
    Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications. Springer, Berlin (2009)zbMATHCrossRefGoogle Scholar
  276. 276.
    Muszynska, A.: Rotor-to-stationary element rub-related vibration phenomena in rotating machinery. Shock Vib. Dig. 21, 3–11 (1989)CrossRefGoogle Scholar
  277. 277.
    Ibrahim, R.A.: Friction-induced vibration, chatter, squeal and chaos, Part I: mechanics of contact and friction. ASME Appl. Mech. Rev. 47(7), 209–226 (1994a)CrossRefGoogle Scholar
  278. 278.
    Ibrahim, R.A.: Friction-induced vibration, chatter, squeal and chaos, Part II: modeling and dynamics. ASME Appl. Mech. Rev. 47(7), 227–253 (1994b)CrossRefGoogle Scholar
  279. 279.
    Muszynska, A., Bently, D.E., Franklin, W.D., Hayashida, R.D., Kingsley, L.M.: Influence of rubbing on rotor dynamics, Part 1. In: Report: NAS 1.26:183648–PT–1. NASA, Washington, DC (1989a)Google Scholar
  280. 280.
    Muszynska, A., Bently, D.E., Franklin, W.D., Hayashida, R.D., Kingsley, L.M.: Influence of rubbing on rotor dynamics, Part 2. In: Report: NAS 1.26:183649-PT-2. NASA, Washington, DC (1989b)Google Scholar
  281. 281.
    Meeks, C.R., Tran, L.: Ball bearing dynamic analysis using computer methods—Part I: analysis. J. Tribol. 118(1), 52–58 (1996)CrossRefGoogle Scholar
  282. 282.
    Wensing, J.A.: On the Dynamics of Ball Bearings. University of Twente, Enschede (1998)Google Scholar
  283. 283.
    Qiu, J., Seth, B.B., Liang, S.Y., Zhang, C.: Damage mechanics approach for bearing lifetime prognostics. Mech. Syst. Signal Process. 16(5), 817–829 (2002)CrossRefGoogle Scholar
  284. 284.
    Harsha, S.P.: Nonlinear dynamic analysis of rolling element bearings due to cage run-out and number of balls. J. Sound Vib. 289(1), 360–381 (2006)CrossRefGoogle Scholar
  285. 285.
    Kappaganthu, K., Nataraj, C.: Nonlinear modeling and analysis of a rolling element bearing with a clearance. Commun. Nonlinear Sci. Numer. Simul. 16(10), 4134–4145 (2011)zbMATHCrossRefGoogle Scholar
  286. 286.
    Ashtekar, A., Sadeghi, F.: Experimental and analytical investigation of high speed turbocharger ball bearings. J. Eng. Gas Turbines Power 133(12), 122501 (2011)CrossRefGoogle Scholar
  287. 287.
    Pandya, D.H., Upadhyay, S.H., Harsha, S.P.: Nonlinear dynamic analysis of high speed bearings due to combined localized defects. J. Vib. Control 20(15), 2300–2313 (2014)CrossRefGoogle Scholar
  288. 288.
    Zhang, Y.Y., Wang, X.L., Zhang, X.Q., Yan, X.L.: Dynamic analysis of a high-speed rotor-ball bearing system under elastohydrodynamic lubrication. J. Vib. Acoust. 136(6), 061003 (2014)CrossRefGoogle Scholar
  289. 289.
    While, M.F.: Rolling element bearing vibration transfer characteristics: effect of stiffness. J. Appl. Mech. 46(3), 677–684 (1979)zbMATHCrossRefGoogle Scholar
  290. 290.
    Lim, T.C., Singh, R.: Vibration transmission through rolling element bearings, Part II: system studies. J. Sound Vib. 139(2), 201–225 (1990)CrossRefGoogle Scholar
  291. 291.
    Aini, R., Rahnejat, H., Gohar, R.: Vibration modeling of rotating spindles supported by lubricated bearings. J. Tribol. 124(1), 158–165 (2002)CrossRefGoogle Scholar
  292. 292.
    Jain, S., Hunt, H.: A dynamic model to predict the occurrence of skidding in wind-turbine bearings. J. Phys. Conf. Ser. 305(1), 012027 (2011)CrossRefGoogle Scholar
  293. 293.
    Cui, L., Zheng, J.: Nonlinear vibration and stability analysis of a flexible rotor supported on angular contact ball bearings. J. Vib. Control 20(12), 1767–1782 (2014)zbMATHCrossRefGoogle Scholar
  294. 294.
    Wang, W., Hu, L., Zhang, S., Kong, L.: Modeling high-speed angular contact ball bearing under the combined radial, axial and moment loads. J. Mech. Eng. Sci. 228(5), 852–864 (2014)CrossRefGoogle Scholar
  295. 295.
    Kogan, G., Klein, R., Kushnirsky, A., Bortman, J.: Toward a 3D dynamic model of a faulty duplex ball bearing. Mech. Syst. Signal Process. 54, 243–258 (2015)CrossRefGoogle Scholar
  296. 296.
    Zhang, X., Han, Q., Peng, Z., Chu, F.: Stability analysis of a rotor-bearing system with time-varying bearing stiffness due to finite number of balls and unbalanced force. J. Sound Vib. 332(25), 6768–6784 (2013)CrossRefGoogle Scholar
  297. 297.
    Zhang, X., Han, Q., Peng, Z., Chu, F.: A comprehensive dynamic model to investigate the stability problems of the rotor-bearing system due to multiple excitations. Mech. Syst. Signal Process. 70, 1171–1192 (2016)CrossRefGoogle Scholar
  298. 298.
    Gunduz, A., Dreyer, J.T., Singh, R.: Effect of bearing preloads on the modal characteristics of a shaft-bearing assembly: experiments on double row angular contact ball bearings. Mech. Syst. Signal Process. 31, 176–195 (2012)CrossRefGoogle Scholar
  299. 299.
    Zhuo, Y., Zhou, X., Yang, C.: Dynamic analysis of double-row self-aligning ball bearings due to applied loads, internal clearance, surface waviness and number of balls. J. Sound Vib. 333(23), 6170–6189 (2014)CrossRefGoogle Scholar
  300. 300.
    Leblanc, A., Nelias, D., Defaye, C.: Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings. J. Sound Vib. 325(1), 145–160 (2009)CrossRefGoogle Scholar
  301. 301.
    Patel, U.A., Upadhyay, S.H.: Theoretical model to predict the effect of localized defect on dynamic behavior of cylindrical roller bearing at inner race and outer race. J. Multi-body Dyn. 228(2), 152–171 (2014)Google Scholar
  302. 302.
    Patel, U.K.A., Upadhyay, S.H.: Nonlinear dynamic response of cylindrical roller bearing-rotor system with 9 degree of freedom model having a combined localized defect at inner-outer races of bearing. Tribol. Trans. 60(2), 284–299 (2017)CrossRefGoogle Scholar
  303. 303.
    Bercea, I., Cretu, S., Nelias, D.: Analysis of double-row tapered roller bearings, Part I-model. Tribol. Trans. 46(2), 228–239 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanical TransmissionChongqing UniversityChongqingPeople’s Republic of China
  2. 2.College of Mechanical EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations