Nonlinear Dynamics

, Volume 93, Issue 4, pp 2071–2088 | Cite as

Adaptive time-varying super-twisting global SMC for projective synchronisation of flexible manipulator

  • K. LochanEmail author
  • J. P. Singh
  • B. K. Roy
  • B. Subudhi
Original Paper


In this paper, a synchronisation strategy between a controlled master and three-slave two-link flexible manipulators is proposed. Two out of the three slaves are identical with the master, whereas the third one is non-identical. The master and the slave manipulators are modelled by assumed modes and lumped parameter methods, respectively. The 12 states of the master manipulator are synchronised to the 8 states of each slave manipulator. Such projective synchronisation is also not available in the literature. A global sliding mode controller is designed first for the master manipulator to track the desired trajectory. Next, the synchronisation between the master and the slaves is achieved by designing an adaptive time-varying super-twisting global sliding mode controller. The simulation results reveal that the performances of the proposed controller in terms of (i) steady-state error of synchronisation, (ii) synchronisation time and (iii) links deflection are much better than the existing controller proposed in 2016.


Synchronisation Global sliding mode control Super-twisting algorithm Two-link flexible manipulators Adaptive control 


  1. 1.
    Rybus, T., Seweryn, K., Sasiadek, J.Z.: Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC). J. Intell. Robot. Syst. 85, 491–509 (2016)CrossRefGoogle Scholar
  2. 2.
    Hendrick, R.J., Mitchell, C.R., Herrell, S.D., Webster, R.J.: Hand-held transendoscopic robotic manipulators: a transurethral laser prostate surgery case study. Int. J. Robot. Res. 34(13), 1559–1572 (2015)CrossRefGoogle Scholar
  3. 3.
    Rout, R., Subudhi, B.: Inverse optimal self-tuning PID control design for an autonomous underwater vehicle. Int. J. Syst. Sci. 7721, 1–9 (2016)zbMATHGoogle Scholar
  4. 4.
    Subudhi, B., Pradhan, S.K.: A flexible robotic control experiment for teaching nonlinear adaptive control. Int. J. Electr. Eng. Educ. 53, 341–356 (2016)CrossRefGoogle Scholar
  5. 5.
    Kiang, C.T., Spowage, A., Yoong, C.K.: Review of control and sensor system of flexible manipulator. J. Intell. Robot. Syst. Theory Appl. 77(1), 187–213 (2015)CrossRefGoogle Scholar
  6. 6.
    Lochan, K., Roy, B.K., Subudhi, B.: A review on two-link flexible manipulators. Annu. Rev. Control 42, 346–367 (2016)CrossRefGoogle Scholar
  7. 7.
    Subudhi, B., Morris, A.S.: Soft computing methods applied to the control of a flexible robot manipulator. Appl. Soft Comput. 9(1), 149–158 (2009)CrossRefGoogle Scholar
  8. 8.
    Pradhan, S.K., Subudhi, B.: Real-time adaptive control of a flexible manipulator using reinforcement learning. IEEE Trans. Autom. Sci. Eng. 9(2), 237–249 (2012)CrossRefGoogle Scholar
  9. 9.
    Pradhan, S.K., Subudhi, B.: Nonlinear adaptive model predictive controller for a flexible manipulator: an experimental study. IEEE Trans. Control Syst. Technol. 22(1754–1768), 1–15 (2014)Google Scholar
  10. 10.
    Rodriguez-Angeles, A., Nijmeijer, H.: Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Trans. Control Syst. Technol. 12(4), 542–554 (2004)CrossRefGoogle Scholar
  11. 11.
    Shang, W., Cong, S., Ge, Y.: Coordination motion control in the task space for parallel manipulators with actuation redundancy. IEEE Trans. Autom. Sci. Eng. 10(3), 665–673 (2013)CrossRefGoogle Scholar
  12. 12.
    Zhao, D., Zhu, Q.: Position synchronised control of multiple robotic manipulators based on integral sliding mode. Int. J. Syst. Sci. 45, 556–570 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chao, L., Dongya, Z., Xianbo, X.: Force synchronization of multiple robot manipulators with uncertain contact stiffness. In: Proceedings of 34th Chinese Control Conference, pp. 1173–1178 (2015)Google Scholar
  14. 14.
    Zhao, D., Li, S., Zhu, Q.: Adaptive synchronised tracking control for multiple robotic manipulators with uncertain kinematics and dynamics. Int. J. Syst. Sci. 7721, 1–14 (2014)Google Scholar
  15. 15.
    Dou, H., Wang, S.: A boundary control for motion synchronization of a two-manipulator system with a flexible beam. Automatica 50(12), 3088–3099 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dou, H., Wang, S.: Robust adaptive motion/force control for motion synchronization of multiple uncertain two-link manipulators. Mech. Mach. Theory 67, 77–93 (2013)CrossRefGoogle Scholar
  17. 17.
    Bouteraa, Y., Ghommam, J., Poisson, G., Derbel, N.: Distributed synchronization control to trajectory tracking of multiple robot manipulators. J. Robot. 2011, 1–10(2011)Google Scholar
  18. 18.
    Liu, Y.C., Chopra, N.: Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Trans. Robot. 28(1), 268–275 (2012)CrossRefGoogle Scholar
  19. 19.
    Han, Q., Zhao, X., Wen, B.: Synchronization motions of a two-link mechanism with an improved OPCL method. Appl. Math. Mech. 29(12), 1561–1568 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Han, Q., Zhang, H., Liu, J.: Nonlinear dynamics of controlled synchronizations of manipulator system. Math. Probl. Eng. 2014, 1–9 (2014)MathSciNetGoogle Scholar
  21. 21.
    Qianlei, C., Shurong, L.I., Dongya, Z., Zhao, W.: Finite-time motion/force control for motion synchronization of multiple manipulators. In: Proceedings of the 33rd Chinese Control Conference, pp. 2121–2126 (2014)Google Scholar
  22. 22.
    Chao, L., Dongya, Z., Xianbo, X.: Force synchronization of multiple robot manipulators: a first study. In: Proceedings of 33rd Chinese Control Conference, pp. 2212–2217 (2014)Google Scholar
  23. 23.
    Cui, R., Yan, W.: Mutual synchronization of multiple robot manipulators with unknown dynamics. J. Intell. Robot. Syst. 68(2), 105–119 (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Khoa, L.D., Truong, D.Q., Ahn, K.K.: Synchronization controller for a 3-R planar parallel pneumatic artificial muscle (PAM) robot using modified ANFIS algorithm. Mechatronics 23(4), 462–479 (2013)CrossRefGoogle Scholar
  25. 25.
    Ouyang, P.R., Pano, V.: Position domain synchronization control of multi-degrees of freedom robotic manipulator. J. Dyn. Syst. Meas. Control 136(2), 21017 (2013)CrossRefGoogle Scholar
  26. 26.
    Ardakani, M.M.G., Cho, J.H., Johansson, R., Robertsson, A.: Trajectory generation for assembly tasks via bilateral teleoperation. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 10230–10235 (2014)Google Scholar
  27. 27.
    Yang, Y., Hua, C., Guan, X.: Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE Trans. Cybern. 46(3), 609–619 (2016)CrossRefGoogle Scholar
  28. 28.
    Wang, H.: Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics. Automatica 49(3), 755–761 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mehrabian, A.R., Khorasani, K.: Constrained distributed cooperative synchronization and reconfigurable control of heterogeneous networked Euler–Lagrange multi-agent systems. Inf. Sci. (Ny) 370–371(5), 578–597 (2016)CrossRefGoogle Scholar
  30. 30.
    Montano, A., Suarez, R.: Coordination of several robots based on temporal synchronization. Robot. Comput. Integr. Manuf. 42, 73–85 (2016)CrossRefGoogle Scholar
  31. 31.
    Rodriguez-Angeles, A., Nijmeijer, H.: Synchronizing tracking control for flexible joint robots via estimated state feedback. Trans. ASME 126(1), 162–172 (2004)CrossRefGoogle Scholar
  32. 32.
    Lochan, K., Roy, B.K., Subudhi, B.: Generalized projective synchronization between controlled master and multiple slave TLFMs with modified adaptive SMC. Trans. Inst. Meas. Control 9, 1–23 (2016)Google Scholar
  33. 33.
    Yang, Y., Hua, C., Li, J., Guan, X.: Fixed-time coordination control for bilateral telerobotics system with asymmetric time-varying delays. J. Intell. Robot. Syst. 86, 447–466 (2016)CrossRefGoogle Scholar
  34. 34.
    Hashemzadeh, F., Hassanzadeh, I., Tavakoli, M., Alizadeh, G.: Adaptive control for state synchronization of nonlinear haptic telerobotic systems with asymmetric varying time delays. J. Intell. Robot. Syst. Theory Appl. 68(3–4), 245–259 (2012)CrossRefzbMATHGoogle Scholar
  35. 35.
    Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhao, D., Li, S., Zhu, Q.: A new TSMC prototype robust nonlinear task space control of a 6 DOF parallel robotic manipulator. Int. J. Control Autom. Syst. 8(6), 1189–1197 (2010)CrossRefGoogle Scholar
  37. 37.
    Su, Y., Sun, D., Ren, L., Mills, J.K.: Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators. IEEE Trans. Robot. 22(1), 202–207 (2006)CrossRefGoogle Scholar
  38. 38.
    Shang, W.W., Cong, S.A., Zhang, Y.X., Liang, Y.Y.: Active joint synchronization control for a 2-DOF redundantly actuated parallel manipulator. IEEE Trans. Control Syst. Technol. 17(2), 416–423 (2009)CrossRefGoogle Scholar
  39. 39.
    Zhao, D., Li, S., Gao, F.: Finite time position synchronised control for parallel manipulators using fast terminal sliding mode. Int. J. Syst. Sci. 40(8), 829–843 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Li, L.B., Sun, L.L., Zhang, S.Z., Yang, Q.Q.: Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control. ISA Trans. 58, 635–649 (2015)CrossRefGoogle Scholar
  41. 41.
    Zao, D., Li, S., Gao, F., Zhu, Q.: Robust adaptive terminal sliding mode-based synchronised position control for multiple motion axes systems. IET Control Theory Appl. 3(3), 136–150 (2009)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zhao, D., Zou, T., Li, S., Zhu, Q.: Adaptive backstepping sliding mode control for leader-follower multi-agent systems. IET Control Theory Appl. 8(6), 1109–1117 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Zhao, D., Li, C., Zhu, Q.: Low-pass-filter-based position synchronization sliding mode control for multiple robotic manipulator systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 225, 1136–1148 (2011)CrossRefGoogle Scholar
  44. 44.
    Yu, W.S., Weng, C.H.: \(H_{\infty }\) tracking adaptive fuzzy integral sliding mode control for parallel manipulators. Fuzzy Sets Syst. 248, 1–38 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Ding, S., Wang, J., Zheng, W.X.: Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions. IEEE Trans. Ind. Electron. 62(9), 5899–5909 (2015)CrossRefGoogle Scholar
  46. 46.
    Xu, S., Chen, C., Wu, Z.: Study of nonsingular fast terminal sliding-mode fault-tolerant control. IEEE Trans. Ind. Electron. 62(6), 3906–3913 (2015)Google Scholar
  47. 47.
    Nasiri, A., Kiong Nguang, S., Swain, A.: Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties. J. Frankl. Inst. 351(4), 2048–2061 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Karandikar, D., Bandyopadhyay, B.: Sliding mode control of single link flexible manipulator. In: Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms, 19–22 Jan., Goa, India, pp. 712–717 (2010)Google Scholar
  49. 49.
    Mujumdar, A., Kurode, S., Tamhane, B.: Control of two link flexible manipulator using higher order sliding modes and disturbance estimation. IFAC Proc. Vol. 47, 95–102 (2014)CrossRefGoogle Scholar
  50. 50.
    Liu, J., Luo, W., Yang, X., Ligang, W.: Robust model-based fault diagnosis for PEM fuel cell air-feed system. IEEE Trans. Ind. Electron. 63(5), 3261–3270 (2016)CrossRefGoogle Scholar
  51. 51.
    Liu, J., Vazquez, S., Ligang, W., Marquez, A., Gao, H., Franquelo, L.G.: Extended state observer-based sliding-mode control for three-phase power converters. IEEE Trans. Ind. Electron. 64(1), 22–31 (2016)CrossRefGoogle Scholar
  52. 52.
    Mobayen, S., Tchier, F.: Design of an adaptive chattering avoidance global sliding mode tracker for uncertain non-linear time-varying systems. Trans. Inst. Meas. Control 39, 1547–1558 (2016)CrossRefGoogle Scholar
  53. 53.
    Mobayen, S.: A novel global sliding mode control based on exponential reaching law for a class of underactuated systems with external disturbances. J. Comput. Nonlinear Dyn. 11(2), 21011 (2015)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Lochan, K., Roy, B.K., Subudhi, B.: Robust tip trajectory synchronisation between assumed modes modelled two-link flexible manipulators using second-order PID terminal SMC. Robot. Auton. Syst. 97, 108–124 (2017)CrossRefGoogle Scholar
  55. 55.
    Subudhi, B., Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41(4), 257–270 (2002)CrossRefzbMATHGoogle Scholar
  56. 56.
    Tran, X.T., Kang, H.J.: Adaptive hybrid high-order terminal sliding mode control of MIMO uncertain nonlinear systems and its application to robot manipulators. Int. J. Precis. Eng. Manuf. 16(2), 255–266 (2015)CrossRefGoogle Scholar
  57. 57.
    Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation, Control Engineering. Springer, Birkhauser (2014)CrossRefGoogle Scholar
  58. 58.
    Mobayen, S., Baleanu, D.: Stability analysis and controller design for the performance improvement of disturbed nonlinear systems using adaptive global sliding mode control approach. Nonlinear Dyn. 83(3), 1557–1565 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • K. Lochan
    • 1
    Email author
  • J. P. Singh
    • 1
  • B. K. Roy
    • 1
  • B. Subudhi
    • 2
  1. 1.Department of EENational Institute of Technology SilcharSilcharIndia
  2. 2.Department of EENational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations