One-to-three resonant Hopf bifurcations of a maglev system

Original Paper
  • 25 Downloads

Abstract

This paper studies the dynamics of a maglev system around 1:3 resonant Hopf–Hopf bifurcations. When two pairs of purely imaginary roots exist for the corresponding characteristic equation, the maglev system has an interaction of Hopf–Hopf bifurcations at the intersection of two bifurcation curves in the feedback control parameter and time delay space. The method of multiple time scales is employed to drive the bifurcation equations for the maglev system by expressing complex amplitudes in a combined polar-Cartesian representation. The dynamics behavior in the vicinity of 1:3 resonant Hopf–Hopf bifurcations is studied in terms of the controller’s parameters (time delay and two feedback control gains). Finally, numerical simulations are presented to support the analytical results and demonstrate some interesting phenomena for the maglev system.

Keywords

Maglev system Multiple scales Resonant Hopf–Hopf bifurcations 

Notes

Acknowledgements

This work is supported by Natural Science Foundation of Hunan Province (2018JJ2192), the Scientific Research Key Project of Hunan Provincial Education Department (16A106) and the China Scholarship Council (CSC) in 2017.

Compliance with ethical standards

Conflict of interest

The authors declare that for this article, there is no conflict of interest in authorial ascription to organizations or financial and personal relationships with other people.

References

  1. 1.
    Roger, G.: Dynamic and control requirements for EMS maglev suspension. In: Maglev 2004 Proceedings, vol. 2, pp. 926–934 (2004)Google Scholar
  2. 2.
    Zhang, Z., Long,Z., She, L., et al.: Linear quadratic state feedback optimal control against actuator failures. In: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, pp. 3349–3354 (2007)Google Scholar
  3. 3.
    Zou, D., She, L., Zhang, Z., et al.: Maglev vehicle and guideway coupled vibration analysis. Acta Electron. Sin. 38(9), 2071–2075 (2010)Google Scholar
  4. 4.
    She, L., Wang, H., Zou, D., et al.: Hopf bifurcation of maglev system with coupled elastic guideway. Maglev 2008, San Diego (2008)Google Scholar
  5. 5.
    Zhang, L.L., Huang, L., Zhang, Z.: Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control. Nonlinear Dyn. 57, 197–207 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Wang, H., Li, J., Zhang, K.: Non-resonant response, bifurcation and oscillation suppression of a non-autonomous system with delayed position feedback control. Nonlinear Dyn. 51, 447–464 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Zhang, L.L., Campbell, S.A., Huang, L.: Nonlinear analysis of a maglev system with time-delayed feedback control. Physics D 240(21), 1761–1770 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Zhang, L.L., Zhang, Z., Huang, L.: Double Hopf bifurcation of time-delayed feedback control for maglev system. Nonlinear Dyn. 69, 961–967 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bi, P., Ruan, S.: Bifurcation in delay differential equations and applications to tumor and immune system interaction models. SIAM J. Appl. Dyn. Syst. 4, 1847–1888 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ding, Y., Jiang, W., Yu, P.: Double Hopf bifurcation in delayed van der Pol–Duffing equation. Int. J. Bifurc. Chaos 23, 1350014 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Angelo, L., Achille, P., Angelo, D.E.: Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34, 269–291 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Wang, W., Xu, J.: Multiple scales analysis for double Hopf bifurcation with 1:3 resonance. Nonlinear Dyn. 66, 39–51 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Alois, S.: Detecting the Shinikov scenario in a Hopf–Hopf bifurcation with 1:3 resonance. Procedia IUTAM 19, 83–90 (2016)CrossRefGoogle Scholar
  14. 14.
    Campbell, S.A., LeBlance, V.G.: Resonant Hopf–Hopf interactions in delay differential equations. J. Dyn. Differ. Equ. 10(2), 327–346 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ji, J.C., Brown, T.: Periodic and chaotic motion of a time-delayed nonlinear system under two coexisting families of additive resonance. Int. J. Bifurc. Chaos 27, 1750066 (2017)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Zhou, Y., Zhang, W.: Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations. Appl. Math. Mech. 38(5), 689–706 (2017)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jiang, H., Song, Y.: Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and applications. Appl. Math. Comput. 266, 1102–1126 (2015)MathSciNetGoogle Scholar
  18. 18.
    Ji, J.C.: Nonresonant Hopf bifurcations of a controlled van der Pol–Duffing oscillator. J. Sound Vib. 297, 183–199 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Angelo, L., Achille, P.: Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues. Nonlinear Dyn. 14, 193–210 (1997)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Yuan, R., Jiang, W., Wang, Y.: Nonresonant double Hopf bifurcation in toxic phytoplankton–zooplankton model with delay. Int. J. Bifurc. Chaos 27(2), 1750028 (2017)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)MATHGoogle Scholar
  22. 22.
    Nayfeh, A.H.: Perturbation Methods. Shanghai Publishing House of Science and Technology, Shanghai (1984)Google Scholar
  23. 23.
    Nayfeh, A.H.: Method of Normal Forms. WileyC Interscience, New York (1993)MATHGoogle Scholar
  24. 24.
    Angelo, L., Egidio, A.D., Achille, P.: On the proper form of the amplitude modulation equations for resonant systems. Nonlinear Dyn. 27(3), 237–254 (2002)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information TechnologyHunan Women’s UniversityChangshaPeople’s Republic of China
  2. 2.School of Mechanical and Mechatronic EngineeringUniversity of Technology SydneyBroadwayAustralia

Personalised recommendations