A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems
- 21 Downloads
Abstract
This paper attempts to construct a new 3-D chaotic system which is easily hardware realisable and fulfil the requirement of a real-life application. The proposed system is relatively more chaotic (based on the first Lyapunov exponent) and has larger bandwidth than 50 available chaotic systems. Lyapunov spectrum and bifurcation diagram of the system reveal that it has chaotic behaviour for a wider range of its parameters. Such characteristic is helpful for an easy hardware realisation of the system. It is to be noted that the reported systems with hidden attractors are not considered here for the comparison. The proposed system has more complexity and disorder due to several unique properties like asymmetry to principle coordinates, dissimilar and asymmetrical equilibria, and non-uniform contraction and expansion of volume in phase space. The proposed system also exhibits asymmetric pairs of coexisting attractors during its operation in two modes. The new system has different routes to chaos including crisis, an inverse crisis, period-doubling and reverse period-doubling routes to chaos with the variation of parameters. MATLAB simulation results confirm the claims, and the results of hardware circuit realisation validate the simulation results. An application of the new system is shown by masking and retrieving an information signal. It is also shown that the proposed system is better than a well-known Lorenz chaotic system for this application. A system with the above unique properties is rare in the literature.
Keywords
New chaotic system: more chaotic Wider spectrum Hardware implementation Crisis route to chaos Inverse crisis route to chaos Communication breakingReferences
- 1.Rajagopal, K., Karthikeyan, A., Srinivasan, A.K.: FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87(4), 2281–2304 (2017)CrossRefGoogle Scholar
- 2.Wang, Z., Akgul, A., Pham, V.T., Jafari, S.: Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors. Nonlinear Dyn. 89(3), 1–11 (2017)Google Scholar
- 3.Pham, V.-T., Volos, C., Kingni, S.T., Kapitaniak, T., Jafari, S.: Bistable hidden attractors in a novel chaotic system with hyperbolic sine equilibrium. Circuits Syst. Signal Process. 37(3), 1028–1043 (2017)MathSciNetCrossRefGoogle Scholar
- 4.Aram, Z., Jafari, S., Ma, J., Sprott, J.C., Zendehrouh, S., Pham, V.T.: Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simul. 44(1), 1–14 (2017)MathSciNetGoogle Scholar
- 5.Andrievskii, A.L., Fradkov, B.R.: Control of chaos: methods and applications. II. Applications. Autom. Remote Control 65(4), 505–533 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 6.Xiong, L., Lu, Y.-J., Zhang, Y.-F., Zhang, X.-G., Gupta, P.: Design and hardware implementation of a new chaotic secure communication technique. PLoS ONE 11(8), 1–19 (2016)Google Scholar
- 7.Teh, J.S., Samsudin, A., Al-Mazrooie, M., Akhavan, A.: GPUs and chaos: a new true random number generator. Nonlinear Dyn. 82(4), 1913–1922 (2015)MathSciNetCrossRefGoogle Scholar
- 8.Wang, Y., Liu, Z., Ma, J., He, H.: A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 83(4), 2373–2391 (2016)MathSciNetMATHCrossRefGoogle Scholar
- 9.Xue, Q., Leung, H., Wang, R., Liu, B., Huang, L., Guo, S.: The chaotic dynamics of drilling. Nonlinear Dyn. 83(4), 2003–2018 (2016)CrossRefGoogle Scholar
- 10.Qi, G., Chen, G., Zhang, Y.: On a new asymmetric chaotic system. Chaos Solitons Fractals 37(2), 409–423 (2008)CrossRefGoogle Scholar
- 11.Serajian, R.: Parameters changing influence with different lateral stiffnesses on nonlinear analysis of hunting behavior of a bogie. J. Meas. Eng. 1(4), 196–206 (2013)Google Scholar
- 12.Younnesian, D., Jafari, A.A., Serajian, R.: Effects of bogie and body inertia on the nonlinear wheel-set hunting recognized by the Hopf bifurcation theory. Int. J. Autom. Eng. 1(3), 186–196 (2011)Google Scholar
- 13.Mohammadi, S., Serajian, R.: Effects of the change in auto coupler parameters on in-train longitudinal forces during brake application. Mech. Ind. 26(205), 186–196 (2011)Google Scholar
- 14.Lu, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the lorenz system and the chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002)MathSciNetMATHCrossRefGoogle Scholar
- 15.Singh, P.P., Singh, J.P., Roy, B.K.: Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control. Chaos Solitons Fractals 69, 31–39 (2014)MathSciNetMATHCrossRefGoogle Scholar
- 16.Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 09, 1465 (1999)MathSciNetMATHCrossRefGoogle Scholar
- 17.Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22(5), 1031–1038 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 18.Tigan, G., Opri, D.: Analysis of a 3D chaotic system. Chaos Solitons Fractals 36(5), 1315–1319 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 19.Pan, L., Zhou, W., Fang, J., Li, D.: A new three-scroll unified chaotic system coined. Int. J. Nonlinear Sci. 10(4), 462–474 (2010)MathSciNetGoogle Scholar
- 20.Pehlivan, I., Uyarolu, Y.: A new chaotic attractor from general Lorenz system family and its electronic experimental implementation. Turk. J. Electr. Eng. Comput. Sci. 18(2), 171–184 (2010)Google Scholar
- 21.Sportt, J.C.: Some simple chaotic flow. Phys. Rev. E 50(2), 647–650 (1994)MathSciNetCrossRefGoogle Scholar
- 22.Qi, G., Du, S., Chen, G., Chen, Z., Yuan, Z.: Analysis of a new chaotic system. Phys. A 352(2–4), 295–308 (2005)CrossRefGoogle Scholar
- 23.Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)MATHCrossRefGoogle Scholar
- 24.Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)MATHCrossRefGoogle Scholar
- 25.Singh, J.P., Roy, B.K.: Coexistence of asymmetric hidden chaotic attractors in a new simple 4-D chaotic system with curve of equilibria. Optik 145, 209–217 (2017). https://doi.org/10.1007/s40435-017-0332-8 CrossRefGoogle Scholar
- 26.Singh, J.P., Roy, B.K., Jafari, S.: New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria. Chaos Solitons Fractals 106, 243–257 (2017)MathSciNetCrossRefGoogle Scholar
- 27.Singh, J.P., Roy, B.K.: Second order adaptive time varying sliding mode control for synchronization of hidden chaotic orbits in a new uncertain 4-D conservative chaotic system. Trans. Inst. Meas. Control. (2017). https://doi.org/10.1177/0142331217727580 Google Scholar
- 28.Singh, J.P., Roy, B.K.: Hidden attractors in a new complex generalised Lorenz hyperchaotic system, its synchronisation using adaptive contraction theory, circuit validation and application. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4062-z Google Scholar
- 29.Alsafasfeh, Q.H.: A new chaotic behavior from Lorenz and Rossler systems and its electronic circuit implementation. Circuits Syst. 02(02), 101–105 (2011)CrossRefGoogle Scholar
- 30.Jiang, S., Yin, J.: Global existence, uniqueness and pathwise property of solutions to a stochastic Rössler–Lorentz system. Chin. Ann. Math. Ser. B 36(1), 105–124 (2015)MathSciNetMATHCrossRefGoogle Scholar
- 31.Bovy, J.: Lyapunov exponents and strange attractors in discrete and continuous dynamical systems. Theoretical Physics Project (2004)Google Scholar
- 32.Singh, J.P., Roy, B.K.: Crisis and inverse crisis route to chaos in a new 3-D chaotic system with saddle, saddle foci and stable node foci nature of equilibria. Optik 127(24), 11982–12002 (2016)CrossRefGoogle Scholar
- 33.Singh, J.P., Roy, B.K.: The simplest 4-D chaotic system with line of equilibria, chaotic 2-torus and 3-torus behaviour. Nonlinear Dyn. 89(3), 1845–1862 (2017)MathSciNetCrossRefGoogle Scholar
- 34.Sprott, J.C.: Maximally complex simple attractors. Chaos 17(3), 1–6 (2007)MathSciNetMATHCrossRefGoogle Scholar
- 35.Xu, Y., Wang, Y.: A new chaotic system without linear term and its impulsive synchronization. Optik 125(11), 2526–2530 (2014)CrossRefGoogle Scholar
- 36.Kim, D., Chang, P.H.: A new butterfly-shaped chaotic attractor. Results Phys. 3, 14–19 (2013)CrossRefGoogle Scholar
- 37.Zhu, C.X.: Theoretic and numerical study of a new chaotic system. Intell. Inf. Manag. 02(02), 104–109 (2010)Google Scholar
- 38.Zhou, W., Xu, Y., Lu, H., Pan, L.: On dynamics analysis of a new chaotic attractor. Phys. Lett. A 372(36), 5773–5777 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 39.Li, C., Li, H., Tong, Y.: Analysis of a novel three-dimensional chaotic system. Optik 124(13), 1516–1522 (2012)CrossRefGoogle Scholar
- 40.Li, X.F., Chlouverakis, K.E., Xu, D.L.: Nonlinear dynamics and circuit realization of a new chaotic flow: a variant of Lorenz, Chen and Lu. Nonlinear Anal. Real World Appl. 10(4), 2357–2368 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 41.Cai, G., Tan, Z.: Chaos synchronization of a new chaotic system via nonlinear control. J. Uncertain Syst. 1(3), 235–240 (2007)Google Scholar
- 42.Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531–548 (1992)MATHCrossRefGoogle Scholar
- 43.Kingni, S.T., Keuninckx, L., Woafo, P., Van Der Sande, G., Danckaert, J.: Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: Theory and electronic implementation. Nonlinear Dyn. 73(1–2), 1111–1123 (2013)MathSciNetMATHCrossRefGoogle Scholar
- 44.Silva, C.P.: Shil’nikov’s theorem-a tutorial. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 10(10), 1057–7122 (1993)MATHGoogle Scholar
- 45.Majeed, N.M.: Implementation of differential chaos shift keying communication system using Matlab–Simulink. J. Am. Sci. 10(10), 240–244 (2014)Google Scholar
- 46.Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)MathSciNetMATHCrossRefGoogle Scholar
- 47.Wang, G., Zhang, X., Zheng, Y., Li, Y.: A new modified hyperchaotic Lu system. Phys. A 371(2), 260–272 (2006)MathSciNetCrossRefGoogle Scholar
- 48.Li, D.: Chaos, Lorenz attractor, Rossler attractor, three-scroll attractor. Phys. Lett. Sect. A Gen. Atom. Solid State Phys. 372(4), 387–393 (2008)MATHGoogle Scholar
- 49.Chen, Z., Yang, Y., Yuan, Z.: A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos Solitons Fractals 38(4), 1187–1196 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 50.Li, X.F., Chu, Y.D., Zhang, J.G., Chang, Y.X.: Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor. Chaos Solitons Fractals 41(5), 2360–2370 (2009)MATHCrossRefGoogle Scholar
- 51.Munmuangsaen, B., Srisuchinwong, B.: A new five-term simple chaotic attractor. Phys. Lett. A 373(44), 4038–4043 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 52.Liu, Y., Yang, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal. Real World Appl. 11(4), 2563–2572 (2010)MathSciNetMATHCrossRefGoogle Scholar
- 53.Dadras, S., Momeni, H.R.: A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Phys. Lett. A 373(40), 3637–3642 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 54.Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376(2), 102–108 (2011)MathSciNetMATHCrossRefGoogle Scholar
- 55.Li, X., Ou, Q.: Dynamical properties and simulation of a new Lorenz-like chaotic system. Nonlinear Dyn. 65(3), 255–270 (2011)MathSciNetMATHCrossRefGoogle Scholar
- 56.San-Um, W., Srisuchinwong, B.: Highly complex chaotic system with piecewise linear nonlinearity and compound structures. J. Comput. 7(4), 1041–1047 (2012)Google Scholar
- 57.Liu, J., Zhang, W.: A new three-dimensional chaotic system with wide range of parameters. Optik 124(22), 5528–5532 (2013)CrossRefGoogle Scholar
- 58.Abooee, A., Yaghini-Bonabi, H., Jahed-Motlagh, M.R.: Chaotic system, circuitry realization, Lyapunov exponent. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1235–1245 (2013)MathSciNetCrossRefGoogle Scholar
- 59.Qiao, Z., Li, X.: Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system. Math. Comput. Modell. Dyn. Syst. 20(3), 264–283 (2014)MathSciNetMATHCrossRefGoogle Scholar
- 60.Deng, K., Li, J., Yu, S.: Dynamics analysis and synchronization of a new chaotic attractor. Optik 125(13), 3071–3075 (2014)CrossRefGoogle Scholar
- 61.Wang, H., Yu, Y., Wen, G.: Dynamical analysis of the Lorenz-84 atmospheric circulation model. J. Appl. Math. 2014, 1–15 (2014)MathSciNetGoogle Scholar
- 62.Zhou, W.-H., Wang, Z.-P., Wu, M.-W., Zheng, W.-H.: Dynamics analysis and circuit implementation of a new three-dimensional chaotic system. Optik 126, 765–768 (2015)CrossRefGoogle Scholar
- 63.Liu, J., Qu, Q., Li, G.: A new six-term 3-D chaotic system with fan-shaped Poincaré maps. Nonlinear Dyn. 82(4), 2069–2079 (2015)CrossRefGoogle Scholar
- 64.Gholizadeh, A., Nik, H.S., Jajarmi, A.: Analysis and control of a three-dimensional autonomous chaotic system. Appl. Math. Inf. Sci. 747(2), 739–747 (2015)MathSciNetGoogle Scholar
- 65.Wu, X., He, Y., Yu, W., Yin, B.: A new chaotic attractor and its synchronization implementation. Circuits Syst. Signal Process. 34(6), 1747–1768 (2015)CrossRefGoogle Scholar
- 66.Bhalekar, S.B.: Forming mechanizm of Bhalekar–Gejji chaotic dynamical system. Am. J. Comput. Appl. Math. 2(6), 257–259 (2013)CrossRefGoogle Scholar
- 67.Su, K.: Dynamic analysis of a chaotic system. Optik 126(24), 4880–4886 (2015)CrossRefGoogle Scholar
- 68.Çiçek, S., Ferikolu, A., Pehlivan, I.: A new 3D chaotic system: dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application. Optik 127(8), 4024–4030 (2016)CrossRefGoogle Scholar
- 69.Akgul, A., Hussain, S., Pehlivan, I.: A new three-dimensional chaotic system without equilibrium points, its dynamical analyses and electronic circuit application. Optik 127, 7062–7071 (2016)CrossRefGoogle Scholar
- 70.Zhang, M., Han, Q.: Dynamic analysis of an autonomous chaotic system with cubic nonlinearity. Optik 127(10), 4315–4319 (2016)CrossRefGoogle Scholar
- 71.Gholamin, P., Sheikhani, A.H.R.: A new three-dimensional chaotic system: dynamical properties and simulation. Chin. J. Phys. 55(4), 1300–1309 (2017)MathSciNetCrossRefGoogle Scholar
- 72.Lai, Q., Huang, J., Xu, G.: Coexistence of multiple attractors in a new chaotic system. Acta Phys. Pol. B 47(10), 2315–2323 (2016)MathSciNetMATHCrossRefGoogle Scholar
- 73.Tuna, M., Fidan, C.B.: Electronic circuit design, implementation and FPGA-based realization of a new 3D chaotic system with single equilibrium point. Optik 127(24), 11786–11799 (2016)CrossRefGoogle Scholar
- 74.Vaidyanathan, S.: Mathematical analysis, adaptive control and synchronization of a ten-term novel three-scroll chaotic system with four quadratic nonlinearities. Int. J. Control Theory Appl. 9(1), 1–20 (2016)MathSciNetGoogle Scholar
- 75.Vaidyanathan, S., Karthikeyan, R.: Analysis, control, synchronization, and LabView implementation of a seven-term novel chaotic system. Int. J. Control Theory Appl. 9(1), 151–174 (2016)Google Scholar
- 76.Volos, C., Akgul, A., Pham, V.T., Stouboulos, I., Kyprianidis, I.: A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn. 89(2), 1047–1061 (2017)CrossRefGoogle Scholar
- 77.Kengne, J., Jafari, S., Njitacke, Z.T., Yousefi Azar Khanian, M., Cheukem, A.: Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms. Commun. Nonlinear Sci. Numer. Simul. 52, 62–76 (2017)CrossRefGoogle Scholar
- 78.Wu, X., Wang, K., Wang, X., Kan, H.: Lossless chaotic color image cryptosystem based on DNA encryption and entropy. Nonlinear Dyn. 90, 855–875 (2017)MathSciNetCrossRefGoogle Scholar
- 79.Ge, X., Lu, B., Liu, F., Luo, X.: Cryptanalyzing an image encryption algorithm with compound chaotic stream cipher based on perturbation. Nonlinear Dyn. 90, 1141–1150 (2017)MathSciNetCrossRefGoogle Scholar
- 80.Abd, M.H., Tahir, F.R., Al-Suhail, G.A., Pham, V.-T.: An adaptive observer synchronization using chaotic time-delay system for secure communication. Nonlinear Dyn. 90, 2583–2598 (2017)MathSciNetCrossRefGoogle Scholar
- 81.Bartolini, G., Fridman, L., Pisano, A., Usai, E.: Modern Sliding Mode Control Theory. Springer, Berlin, Heidelberg (2008)MATHCrossRefGoogle Scholar
- 82.Lvarez, G., Montoya, F., Romera, M., Pastor, G.: Breaking two secure communication systems based on chaotic masking. IEEE Trans. Circuits Syst. Express Briefs 51, 505–506 (2004)CrossRefGoogle Scholar
- 83.Boutayeb, M., Darouach, M., Rafaralahy, H.: Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49, 345–349 (2002)MathSciNetMATHCrossRefGoogle Scholar
- 84.Lvarez, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modulated chaotic secure communication system. Chaos Solitons Fractals 21, 783–787 (2004)MATHCrossRefGoogle Scholar
- 85.Lvarez, G., Montoya, F., Pastor, G., Romera, M.: Breaking a secure communication scheme based on the phase synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 14, 274–278 (2004)CrossRefGoogle Scholar
- 86.Lvarez, G., Li, S., Montoya, F., Pastor, G., Romera, M.: Breaking projective chaos synchronization secure communication using filtering and generalized synchronization. Chaos Solitons Fractals 24, 775–783 (2005)MATHCrossRefGoogle Scholar