High-order solutions of motion near triangular libration points for arbitrary value of \({\varvec{\mu }}\)

Original Paper
  • 40 Downloads

Abstract

In this paper, a new methodology is proposed to derive the high-order approximations of motions near them in three cases, i.e., the mass ratio is greater than, smaller than and equal to Gascheau and Routh critical value. A preliminary analysis on the phase space structure of triangular libration points in the first case is accomplished from the point of view of the dynamical system theory, demonstrating that they have two-dimensional stable/unstable manifolds and zero-dimensional center manifolds, referred to as \(2+2+0\) type. Further investigations show the topological type of triangular libration points evolves from center–center type to \(2+2+0\) type as mass ratio increases above Gascheau and Routh critical value. The high-order approximations of motion near triangular libration points are constructed using a modified method of variation of parameters. The methodology developed in this paper can deal with triangular libration points of all three topological types, which remains unsolved by the traditional Lindstedt–Poincaré method. The simulation results demonstrate that the expansions up to 11th order are a good replacement of numerical computation with a tolerate error. The validity regions of initial position deviation are presented, and a modification of the algorithm is performed to guarantee the continuity near Gascheau and Routh critical value. Furthermore, the high-order solutions of two-dimensional stable/unstable manifolds are employed to search for homoclinic connections of triangular libration points of 2577 Litva.

Keywords

Triangular libration points Invariant manifolds Phase space structure Homoclinic/heteroclinic connections Circular restricted three-body problem 

Notes

Acknowledgements

Yuying Liang acknowledges the finical supports from Academic Excellence Foundation of BUAA for PhD Students and Shanghai Space Science and Technology Innovation Foundation (SAST2017-033). Ming Xu acknowledges the supports from the National Natural Science Foundation of China (11772024 and 11432001). Shijie Xu acknowledges the supports from Aerospace Science Foundation by China Aerospace Science and Industry Corporation (170134) and the Fundamental Research Funds for the Central Universities (YWF-16-BJ-Y-10).

References

  1. 1.
    Szebehely, V.: Theory of Orbits. Academic Press, New York (1867)Google Scholar
  2. 2.
    Alfriend, K.T.: The stability of the triangular lagrangian points for commensurability of order two. Celest. Mech. 1, 351–359 (1970)CrossRefMATHGoogle Scholar
  3. 3.
    Gascheau, G.: Examen d’une classe d’équations différentielles et application à un cas particulier du problème des trois corps. C. R. Acad. Sci. 16, 393–394 (1843). (in French)Google Scholar
  4. 4.
    Leontovich, A.M.: On the stability of the lagrange periodic solutions of the restricted three-body problem. Dokl. Akad. Nauk SSSR 143, 525–529 (1962). (in Russian)MathSciNetGoogle Scholar
  5. 5.
    Deprit, A., Deprit-Bartholomé, A.: Stability of the triangular Lagrangian points. Astronaut. J. 72, 173–179 (1967)CrossRefMATHGoogle Scholar
  6. 6.
    Markeev, A.P.: On the stability of the triangular libration points in the circular bounded three-body problem. PMM. J. Appl. Math. Mech. Engl. Tr. 33(1), 112–116 (1969)MathSciNetMATHGoogle Scholar
  7. 7.
    William, P., Trivailo, O.: Optimal Libration Point Orbital Maneuvers. Presented in 56th International Astronautical Congress, Paper IAC-05-C1.1.09 (2015)Google Scholar
  8. 8.
    Schwarz, R., Funk, B., Bazsó, Á.: New insights into the stability of L4 in the spatial restricted three-body problem. Mon. Not. R. Astron. Soc. 436(4), 3663–3667 (2013)CrossRefGoogle Scholar
  9. 9.
    Hou, X.Y., Scheeres, D.J., Xin, X.: Stable motions around triangular libration points in the real Earth-Moon system. Mon. Not. R. Astron. Soc. 454(4), 4172–4187 (2015)CrossRefGoogle Scholar
  10. 10.
    Kovács, T.: Stability chart of the triangular points in the elliptic-restricted problem of three bodies. Mon. Not. R. Astron. Soc. 430(4), 2755–2760 (2013)CrossRefGoogle Scholar
  11. 11.
    Feng, J., Noomen, R., Yuan, J.: Orbital motion in the vicinity of the non-collinear equilibrium points of a contact binary asteroid. Planet. Space Sci. 117, 1–14 (2015)CrossRefGoogle Scholar
  12. 12.
    Jiang, Y., Yu, Y., Baoyin, H.: Periodic orbits, stability and bifurcations in the potential field of highly irregular-shaped celestial bodies. Nonlinear Dyn. 81(1–2), 119–140 (2014)MATHGoogle Scholar
  13. 13.
    Jiang, Y., Baoyin, H., Wang, X., et al.: Periodic Orbits, Chaos and Manifolds near the Equilibrium Points in the Rotating Plane-Symmetric Potential Field. Physics. Eprint arXiv:1403.1967 (2015)
  14. 14.
    Magria, C., Howell, E.S., Nolan, M.C., et al.: Radar and photometric observations and shape modeling of contact binary near-Earth Asteroid (8567) 1996 HW1. Icarus 214(1), 210–227 (2011)CrossRefGoogle Scholar
  15. 15.
    Deprit, A.: Limiting orbits around the equilateral centers of libration. Progr. Astronaut. Rockey. 17, 31–35 (1966)CrossRefMATHGoogle Scholar
  16. 16.
    Pedersen, P., Strömgren, E.: Fourier series for the periodic orbits around the triangular libration points. Mon. Not. R. Astron. Soc. 95(5), 482 (1935)CrossRefMATHGoogle Scholar
  17. 17.
    Lei, H., Xu, B., Hou, X., et al.: High-order analytical solutions around triangular libration points in the circular restricted three-body problem. Mon. Not. R. Astron. Soc. 434(2), 1376–1386 (2013)CrossRefGoogle Scholar
  18. 18.
    Jorba, À., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D 132(1–2), 189–213 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Koon, W.S., Lo, M.W., Marsden, J.E., et al.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Springer, New York (2006)MATHGoogle Scholar
  20. 20.
    Peng, H., Chen, B., Wu, Z.: Multi-objective transfer to libration-point orbits via the mixed low-thrust and invariant-manifold approach. Nonlinear Dyn. 77(1–2), 1–18 (2014)MathSciNetMATHGoogle Scholar
  21. 21.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)CrossRefMATHGoogle Scholar
  22. 22.
    Meiss, J.D.: Differential Dynamical Systems, Society for Industrial and Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2007)CrossRefGoogle Scholar
  23. 23.
    Barden, B.T., Howell, K.C., Lo, M.W.: Application of dynamical systems theory to trajectory design for a libration point mission. In: AIAA/AAS Astrodynamics Conference, AIAA Paper 96-3602 (1996)Google Scholar
  24. 24.
    Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22(3), 241–253 (1980)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Masdemont, J.J.: High-order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. Int. J. 20(1), 59–113 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Henrard, J., Navarro, J.F.: Families of periodic orbits emanating from homoclinic orbits in the restricted problem of three bodies. Celest. Mech. Dyn. Astron. 89(3), 285–304 (2004)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Sicardy, B.: Stability of the triangular lagrange points beyond Gascheau’s value. Celest. Mech. Dyn. Astron. 107(1–2), 145–155 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Conley, C.C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 97(4), 732–746 (1968)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    McGehee, R.: Some Homoclinic Orbits for the Restricted Three Body Problem. Ph.D. Thesis, Univ. Wisconsin (1969)Google Scholar
  31. 31.
    Llibre, J., Martínez, R., Simó, C.: Tranversality of the invariant manifolds associated to the lyapunov family of periodic orbits near \(L_{2}\) in the restricted three-body problem. J. Differ. Equ. 58(1), 104–156 (1985)CrossRefMATHGoogle Scholar
  32. 32.
    Simó, C., Martinez, R.: Qualitative study of the planar isosceles three-body problem. Celest. Mech. Dyn. Astron. 41(1), 179–251 (1987)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Koon, W.S., Marsden, J.E., Ross, S.D., et al.: Constructing a low energy transfer between jovian moons. Contemp. Math. 292, 129–145 (2001)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Liang, Y., Xu, M., Xu, S.: Homoclinic/heteroclinic connections of equilibria and periodic orbits of contact binary asteroids. J. Guid. Control Dyn. 40(8), 2042–2061 (2017)CrossRefGoogle Scholar
  35. 35.
    Pravec, P., Scheirich, P., Vokrouhlický, D., et al.: Binary asteroid population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries. Icarus 218(1), 125–143 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of AstronauticsBeihang UniversityBeijingChina

Personalised recommendations