Nonlinear Dynamics

, Volume 92, Issue 3, pp 1109–1118 | Cite as

Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller

Original Paper
  • 60 Downloads

Abstract

The magnetostrictive actuator is a widely used precision smart actuator; however, the micro-positioning and tracking performance of it is limited due to the inherent dynamic nonlinearities. In order to improve the tracking performance of actuator, a hybrid control strategy comprising a preliminary rate-independent hysteresis compensation and a further adaptive filter controller is developed. The generalized Prandtl–Ishlinskii model that has analytical inversion is used to preliminarily compensate the rate-independent hysteresis. A modified coral reef optimization algorithm is utilized to identify the model parameter and accordingly enhance the compensation accuracy. In addition, considering the input current and output displacement of magnetostrictive actuator are always positive, a one-side generalized play operator is adopted. Further, the adaptive finite impulse response controller is applied to eliminate the preliminary compensation error which is owing to the dynamic effect of nonlinearities. In order to validate the hybrid control strategy, some simulations and experiments are conducted. Compared with the feedforward inverse controller, the hybrid control strategy is of better accuracy and adaptivity. The results demonstrate that the hybrid control strategy is capable of precisely tracking step and multiple-frequency sinusoidal trajectory.

Keywords

Magnetostrictive actuator Trajectory tracking Dynamic nonlinearities Adaptive filter control Modified coral reef optimization 

Notes

Acknowledgements

The work is supported by National Natural Science Foundation of China (Grant No. 51775349), National key R&D program of China (No. 2017YFF0108000) and SJTU-CASC Advanced Space Technology Fund (Nos. USCAST 2015-05, USCAST 2016-13), for which the authors are most grateful.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Tan, X., Baras, J.S.: Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40(9), 1469–1480 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Zhang, T., Jiang, C., Zhang, H., Xu, H.: Giant magnetostrictive actuators for active vibration control. Smart Mater. Struct. 13(3), 473–477 (2004). ISSN 0964-1726 1361-665XCrossRefGoogle Scholar
  3. 3.
    Yang, B., Meng, G., Feng, Z.-Q., Yang, D.: Giant magnetostrictive clamping mechanism for heavy-load and precise positioning linear inchworm motors. Mechatronics 21(1), 92–99 (2011)CrossRefGoogle Scholar
  4. 4.
    Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994)CrossRefMATHGoogle Scholar
  5. 5.
    Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis (invited). J. Appl. Phys. 61(1–2), 48–60 (1986)Google Scholar
  6. 6.
    Oh, J.H., Bernstein, D.S.: Piecewise linear identification for the rate-independent and rate-dependent Duhem hysteresis models. IEEE Trans. Autom. Control 52(3), 576–582 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kuhnen, K., Krejci, P.: Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems—a new Preisach modeling approach. IEEE Trans. Autom. Control 54(3), 537–550 (2009). ISSN 0018-9286MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions, vol. 121. Springer, Berlin (1996)MATHGoogle Scholar
  9. 9.
    Meng, A., Yang, J., Li, M., Jiang, S.: Research on hysteresis compensation control of GMM. Nonlinear Dyn. 83(1), 161–167 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl–Ishlinskii approach. Eur. J. Control 9(4), 407–418 (2003). ISSN 09473580CrossRefMATHGoogle Scholar
  11. 11.
    Al Janaideh, M., Rakheja, S., Su, C.: An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE-ASME Trans. Mech. 16(4), 734–744 (2011). ISSN 1083-4435CrossRefGoogle Scholar
  12. 12.
    Aljanaideh, O., Al Janaideh, M., Rakheja, S., Su, C.Y.: Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse Prandtl–Ishlinskii model. Smart Mater. Struct. 22(2), 025027 (2013). ISSN 0964-1726 1361-665XCrossRefGoogle Scholar
  13. 13.
    Aljanaideh, O., Rakheja, S., Su, C.: Experimental characterization and modeling of rate-dependent asymmetric hysteresis of magnetostrictive actuators. Smart Mater. Struct. 23(3), 035002 (2014). ISSN 0964-1726 1361-665XCrossRefGoogle Scholar
  14. 14.
    Guo, Y., Mao, J., Zhou, K.: Rate-dependent modeling and robust control of GMA based on Hammerstein model with Preisach operator. IEEE Trans. Control Syst. Technol. 23(6), 2432–2439 (2015). ISSN 1063-6536CrossRefGoogle Scholar
  15. 15.
    Li, Z., Zhang, X., Gu, G.Y., Chen, X.: A comprehensive dynamic model for magnetostrictive actuators considering different input frequencies with mechanical loads. IEEE Trans. Ind. Inf. 12(3), 980–990 (2016)CrossRefGoogle Scholar
  16. 16.
    Vörös, J.: Recursive identification of discrete-time nonlinear cascade systems with time-varying output hysteresis. Nonlinear Dyn. 87(2), 1427–1434 (2017)CrossRefGoogle Scholar
  17. 17.
    Papoulis, E.V., Stathaki, T.: A normalized robust mixed-norm adaptive algorithm for system identification. IEEE Signal Process. Lett. 11(1), 56–59 (2004)CrossRefGoogle Scholar
  18. 18.
    George, N.V., Panda, G.: Advances in active noise control: a survey, with emphasis on recent nonlinear techniques. Signal Process. 93(2), 363–377 (2013)CrossRefGoogle Scholar
  19. 19.
    Shah, S.M., Samar, R., Khan, N.M., Raja, M.A.Z.: Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn. 85(3), 1363–1376 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-Lpez, S., Portilla-Figueras, J.A.: The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci World J, 2014, 739768–739768 (2014)Google Scholar
  21. 21.
    Salcedo-Sanz, S., Pastor-Sánchez, A., Del Ser, J., Prieto, L., Geem, Z.W.: A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction. Renew Energy 75, 93–101 (2015)CrossRefGoogle Scholar
  22. 22.
    Li, M., Miao, C., Leung, C.: A coral reef algorithm based on learning automata for the coverage control problem of heterogeneous directional sensor networks. Sensors 15(12), 30617–30635 (2015)CrossRefGoogle Scholar
  23. 23.
    Yang, Y., Yang, B., Niu, M.: Parameter identification of Jilesc–Atherton model for magnetostrictive actuator using hybrid niching coral reefs optimization algorithm. Sens. Actuators A Phys. 261, 184–195 (2017)CrossRefGoogle Scholar
  24. 24.
    Li, J., Mourelatos, Z.P.: Time-dependent reliability estimation for dynamic problems using a niching genetic algorithm. J. Mech. Des. 131(7), 1119–1133 (2009)CrossRefGoogle Scholar
  25. 25.
    Kang, F., Li, J., Ma, Z.: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf. Sci. 181(16), 3508–3531 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Haykin, S.: Adaptive Filter Theory, vol. 2, pp. 478–481. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  27. 27.
    Shin, H.C., Sayed, A.H., Song, W.J.: Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett. 11(2), 132–135 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations