Nonlinear Dynamics

, Volume 92, Issue 3, pp 1061–1078 | Cite as

Fractional-order PWC systems without zero Lyapunov exponents

  • Marius-F. Danca
  • Michal Fečkan
  • Nikolay V. Kuznetsov
  • Guanrong Chen
Original Paper
  • 78 Downloads

Abstract

In this paper, it is shown numerically that a class of fractional-order piece-wise continuous systems, which depend on a single real bifurcation parameter, have no zero Lyapunov exponents but can be chaotic or hyperchaotic with hidden attractors. Although not analytically proved, this conjecture is verified on several systems including a fractional-order piece-wise continuous hyperchaotic system, a piece-wise continuous chaotic Chen system, a piece-wise continuous variant of the chaotic Shimizu-Morioka system and a piece-wise continuous chaotic Sprott system. These systems are continuously approximated based on results of differential inclusions and selection theory, and numerically integrated with the Adams-Bashforth-Moulton method for fractional-order differential equations. It is believed that the obtained results are valid for many, if not most, fractional-order PWC systems.

Keywords

Fractional-order piece-wise continuous system Continuous approximation Lyapunov exponent Chaotic system Hyperchaotic system 

Abbreviations

FO

Fractional order

FDE

Fractional-order differential equation

DI

Differential inclusion

PWC

Piece-wise continuous

IVP

Initial value problem

ABM

Adams-Bashforth-Moulton

List of symbols

h

Integration step-size (for ABM method)

\(h_\mathrm{norm}\)

Normalization step-size (for Lyapunov exponents)

\(D_*^q\)

Caputo’s derivative with 0 as starting point

Notes

Acknowledgements

The study of hidden attractors was done by M.-F. Danca, N. Kuznetsov and G. Chen within the RSF Project (14-21-00041). M. Fečkan is also supported in part by the Slovak Research and Development Agency under the Contract No. APVV-14-0378 and by the Slovak Grant Agency VEGA Nos. 2/0153/16 and 1/0078/17. M.-F. Danca thanks Vlad–Marius Griguta of University of Manchester for helping with some computations.

References

  1. 1.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics. Springer (2008)Google Scholar
  2. 2.
    Aubin, J.P., Cellina, A.: Differential Inclusions: Set-valued Maps and Viability Theory. Grundlehren der mathematischen Wissenschaften. Springer (1984)Google Scholar
  3. 3.
    Backes, L., Poletti, M., Varandas, P.: Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems. arXiv:1612.05056 (2016). https://arxiv.org/pdf/1612.05056
  4. 4.
    Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems. A method for computing all of them. Part II: Numerical application. Meccanica 15(1), 21–30 (1980)CrossRefMATHGoogle Scholar
  5. 5.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Roy. Astron. Soc. 13(5), 529–539 (1967)CrossRefGoogle Scholar
  6. 6.
    Cortes, J.: Discontinuous dynamical systems. IEEE Control Syst. 28(3), 36–73 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Danca, M.-F.: Lyapunov exponents of a class of piecewise continuous systems of fractional order. Nonlinear Dyn. 81(1), 227–237 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Danca, M.-F., Aziz-Alaoui, M.A., Small, M.: A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors. Chin. Phys. B 24(6), (2015)Google Scholar
  9. 9.
    Danca, M.-F., Fečkan, M., Kuznetsov, N., Chen, G.: Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system. Nonlinear Dyn. (2017).  https://doi.org/10.1007/s11071-017-4029-5
  10. 10.
    Danca, M.-F.: Hidden chaotic attractors in fractional-order systems. Nonlinear Dyn. 89(1), 577–586 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dieci, L., Lopez, L.: A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side. J. Comput. Appl. Math. 236(16), 3967–3991 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dontchev, A., Lempio, F.: Difference methods for differential inclusions: a survey. SIAM Rev. 34(2), 263–294 (1992)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dorcak, L.: Numerical models for the simulation of the fractional-order control systems. arXiv:math/0204108 [math.OC], (2015). https://arxiv.org/abs/math/0204108v1
  16. 16.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617–656 (1985)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    El-Sayed, A.M.A., Ibrahim, A.G.: Multivalued fractional differential equations. Appl. Math. Comput. 68(1), 15–25 (1995)MathSciNetMATHGoogle Scholar
  19. 19.
    Filippov, A.F.: Differential equations with discontinuous right-hand sides. Kluwer, Dordrecht (1988)CrossRefMATHGoogle Scholar
  20. 20.
  21. 21.
    Ge, Z.-M., Yang, C.-H.: Hyperchaos of four state autonomous system with three positive Lyapunov exponents. Phys. Lett. A 373(3), 349–353 (2009)CrossRefMATHGoogle Scholar
  22. 22.
    Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer, Berlin (2014)MATHGoogle Scholar
  23. 23.
    Govorukhin, V.: Calculation Lyapunov exponents for ODE. http://www.math.rsu.ru/mexmat/kvm/matds/, (2004)
  24. 24.
    Hu, G.: Generating hyperchaotic attractors with three positive Lyapunov exponents via state feedback control. Int. J. Bifurcat. Chaos 19(2), 651–660 (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order. Methods, results and problems, I. Appl. Anal. 78(1–2), 153–192 (2001)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kunze, M.: Non-Smooth Dynamical Systems, vol. 1744. Springer, New York (2000)MATHGoogle Scholar
  27. 27.
    Lempio, F., Veliov, V.M.: Discrete approximations of differential inclusions. Bayreuther Mathematische Schriften 54, 149–232 (1998)MathSciNetMATHGoogle Scholar
  28. 28.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015)CrossRefGoogle Scholar
  29. 29.
    Li, C., Gong, Z., Qian, D., Chen, Y.: On the bound of the Lyapunov exponents for the fractional differential systems. Chaos 20(1), (2010). art. num. 016001CHAGoogle Scholar
  30. 30.
    Li, C., Sprott, J.C., Thio, W., Zhu, H.: A new piecewise linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(12), 977–981 (2014)CrossRefGoogle Scholar
  31. 31.
    Muller, P.C.: Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos Solitons Fractals 5(9), 1671–1681 (1995)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)MATHGoogle Scholar
  33. 33.
    Pesin, Y.: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surv. 32(4), 55–114 (1977)CrossRefMATHGoogle Scholar
  34. 34.
    Pham, V.-T., Volos, C., Jafari, S., Wang, X., Vaidyanathan, S.: Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron. Adv. Mater. Rapid Commun. 8(11–12), 1157–1163 (2014)Google Scholar
  35. 35.
    Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)MathSciNetMATHGoogle Scholar
  36. 36.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Academic Press, Dan Diego (1999)MATHGoogle Scholar
  37. 37.
    Popp, K., Stelter, P.: Stick-slip vibrations and chaos. Philos. Trans. R. Soc. Lond. A 332, 89–105 (1990)CrossRefMATHGoogle Scholar
  38. 38.
    Ramasubramanian, K., Sriram, M.S.: A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139(1–2), 72–86 (2000)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Rossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Singh, J.P., Roy, B.K.: The nature of Lyapunov exponents is \((+, +, -, -)\). Is it a hyperchaotic system? Chaos Solitons Fractals 92, 73–85 (2016)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Sprott, J.C.: A new class of chaotic circuits. Phys. Lett. Sect. A Gen. At. Solid State Phys. 266(1), 19–23 (2000)Google Scholar
  42. 42.
    Stefanski, A., Kapitaniak, T.: Estimation of the dominant lyapunov exponent of non-smooth systems on the basis of maps synchronization. Chaos Solitons Fractals 15(2), 233–244 (2003)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N., Prasad, A., Shrimali, M.D.: Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4054-z Google Scholar
  44. 44.
    Stuart, A., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  45. 45.
    Tavazoei, M.S., Haeri, M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45(8), 1886–1890 (2009)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Wojewoda, J., Stefanski, A., Wiercigroch, M., Kapitaniak, T.: Estimation of Lyapunov exponents for a system with sensitive friction model. Arch. Appl. Mech. 79(6–7), 667–677 (2009)CrossRefMATHGoogle Scholar
  47. 47.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(D), 285–317 (1985)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Yu, S., Tang, W.K.S., Lu, J., Chen, G.: Generation of n\(\times \)m-wing Lorenz-like attractors from a modified Shimizu-Morioka model. IEEE Trans. Circuits Syst. II Express Briefs 55(11), 1168–1172 (2008)CrossRefGoogle Scholar
  50. 50.
    Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press, London (2016)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceAvram Iancu UniversityCluj-NapocaRomania
  2. 2.Romanian Institute for Science and TechnologyCluj-NapocaRomania
  3. 3.Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and InformaticsComenius University in Bratislava, Mlynská dolinaBratislavaSlovak Republic
  4. 4.Mathematical Institute, Slovak Academy of SciencesBratislavaSlovak Republic
  5. 5.Department of Applied CyberneticsSaint-Petersburg State UniversitySaint PetersburgRussia
  6. 6.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland
  7. 7.Department of Electronic EngineeringCity University of Hong KongHong KongChina

Personalised recommendations