Advertisement

Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations

  • U. Javed
  • A. AbdelkefiEmail author
Original Paper
  • 70 Downloads

Abstract

The vortex-induced vibrations of a circular cylinder attached as a tip mass at the end of a cantilever beam are investigated for hybrid energy harvesting using two different transduction mechanisms, namely piezoelectric and electromagnetic. The high aeroelastic oscillations generated for a range of wind speeds are translated into electrical energy by both transducers. The aerodynamic force is modeled by a modified van der Pol wake oscillator model. The Euler–Lagrange principle and Galerkin procedure are utilized to develop a nonlinear distributed-parameter model to evaluate performance of the hybrid energy harvester. The effects of the external load resistances, placement and mass of the magnet on coupled damping, frequency, and performance of the hybrid energy harvester are deeply studied. It is shown that performance of the hybrid energy harvester is highly dependent on both the external load resistances. It is demonstrated that, in the synchronous region, placement of the magnet has a huge effect on tip displacement of the harvester, generated current in the electromagnetic circuit, and generated voltage in the piezoelectric circuit. On the contrary, mass of the magnet has a negligible effect on behavior of the considered hybrid system. A comparative study between the hybrid energy harvester with the classical piezoelectric and electromagnetic counterparts is also carried out. It is indicated that, by carefully choosing the external load resistances and harvesters’ properties, energy harvesting in a hybrid configuration is an effective replacement for two different classical harvesters working separately. It is concluded that hybrid energy harvesters come out to be an effective choice for powering multiple electronic devices.

Keywords

Hybrid energy harvesting Vortex-induced oscillations Comparative study Nonlinear characterization Shunt damping 

References

  1. 1.
    Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10(2), 136 (2000)CrossRefGoogle Scholar
  2. 2.
    Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13(5), 1131 (2004)CrossRefGoogle Scholar
  3. 3.
    Beeby, S.P., Tudor, P.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006)CrossRefGoogle Scholar
  4. 4.
    Inman, D.J., Grisso, B.L.: Towards autonomous sensing. In: Smart Structures and Materials, International Society for Optics and Photonics, 61740TGoogle Scholar
  5. 5.
    Karami, A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)CrossRefGoogle Scholar
  6. 6.
    Ghommem, M., Abdelkefi, A.: Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theoret. Appl. Mech. Lett. 3, 052001 (2013)CrossRefGoogle Scholar
  7. 7.
    Akaydin, H.D., Elvin, N., Andreopoulos, Y.: Wake of a cylinder: a paradigm for energy harvester with piezoelectric materials. Exp. Fluids 49(1), 291–304 (2010)CrossRefGoogle Scholar
  8. 8.
    Akaydin, H.D., Elvin, N., Andreopoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21, 025007 (2012)CrossRefGoogle Scholar
  9. 9.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders. Nonlinear Dyn. 70, 1377–1388 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I., Nuhait, A.O.: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332, 4656–4667 (2013)CrossRefGoogle Scholar
  11. 11.
    Sirohi, J., Mahadik, M.: Piezoelectric wind energy harvester for low-power sensors. J. Intell. Mater. Syst. Struct. 22, 2215–2228 (2011)CrossRefGoogle Scholar
  12. 12.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvester. Nonlinear Dyn. 67, 925–939 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)CrossRefGoogle Scholar
  14. 14.
    Abdelkefi, A., Nuhait, A.O.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22(9), 095029 (2013)CrossRefGoogle Scholar
  15. 15.
    Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329(14), 2873–2883 (2010)CrossRefGoogle Scholar
  16. 16.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70(2), 1355–1363 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jung, H.J., Lee, S.W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20, 055022 (2011)CrossRefGoogle Scholar
  18. 18.
    Abdelkefi, A., Scanlon, J.M., McDowell, E., Hajj, M.R.: Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 103, 033903 (2013)CrossRefGoogle Scholar
  19. 19.
    Akaydin, H.D., Elvin, N., Andreopoulos, Y.: Energy harvesting from highly unsteady fluid flow using piezoelectric materials. J. Intell. Mater. Syst. Struct. 21, 1263–1278 (2010)CrossRefGoogle Scholar
  20. 20.
    Molino-Minero-Re, E., Carbonell-Ventura, M., Fisac-Fuentes, C., Manuel-Lazaro, A., Toma, D. M.: Piezoelectric energy harvesting from induced vortex in water ow. In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC ’12), pp. 624–627Google Scholar
  21. 21.
    Dai, H.L., Abdelkefi, A., Wang, L.: Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 25(14), 1861–1874 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhang, M., Wang, J.: Experimental study on piezoelectric energy harvesting from vortex-induced vibrations and wake-induced vibrations. J. Sens. (2016)Google Scholar
  23. 23.
    Zhu, D., Beeby, S., Tudor, J., White, N., Harris, N.: A novel miniature wind generator for wireless sensing applications. In: Sensors, 2010 IEEE , pp. 1415–1418 (2010)Google Scholar
  24. 24.
    De Marqui, C., Erturk, A.: Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction. J. Intell. Mater. Syst. Struct. 24, 846–854 (2012)CrossRefGoogle Scholar
  25. 25.
    Dias, J.A.C., De Marqui Jr., C., Erturk, A.: Three-degree-of-freedom hybrid piezoelectric-inductive aeroelastic energy harvester exploiting a control surface. AIAA J. 53(2), 394–404 (2014)CrossRefGoogle Scholar
  26. 26.
    Dias, J.A.C., De Marqui Jr., C., Erturk, A.: Hybrid piezoelectric-inductive low energy harvesting and dimensionless electroaeroelastic analysis for scaling. Appl. Phys. Lett. 102(4), 044101 (2013)CrossRefGoogle Scholar
  27. 27.
    Javed, U., Dai, H.L., Abdelkefi, A.: Nonlinear dynamics and comparative analysis of hybrid piezoelectric-inductive energy harvesters subjected to galloping vibrations. Eur. Phys. J. Spec. Top. 224(14–15), 2929–2948 (2015)CrossRefGoogle Scholar
  28. 28.
    Facchinetti, M., De Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(2), 123–140 (2004)CrossRefGoogle Scholar
  29. 29.
    Dai, H.L., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 42, 22–36 (2017)CrossRefGoogle Scholar
  30. 30.
    Abdelkefi, A., Barsallo, N.: Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. 25, 1771–1785 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of LahoreLahorePakistan
  2. 2.Department of Mechanical and Aerospace EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations