Advertisement

On stochastic dynamic analysis and assessment of bistable structures

  • Xianbo Sun
  • Yahui ZhangEmail author
  • David Kennedy
Original Paper
  • 64 Downloads

Abstract

This paper investigates some basic issues on the stochastic dynamic analysis and assessment of bistable structures from an applications perspective, illustrated with a classical spring–mass–rod structure. A complete Lagrangian-description-based Monte Carlo simulation and an Eulerian-description-based Fokker–Planck equation analysis are implemented, respectively, to capture the evolution process of the physical response probability density function, with special focus on the dynamics under the statistical steady state condition. A comparison of these two methods outlines their capabilities. As a representative example, quantitative counting and statistical analysis of the number and amplitudes of snapping-through of the structure indicate that physical quantities for structural assessment may show certain statistical regularities under the statistical steady state condition, which can be utilized efficiently to reduce the efforts of structural assessment without loss of precision.

Keywords

Bistable structures Monte Carlo simulation Fokker–Planck equation Statistical steady state Probability density evolution 

Notes

Acknowledgements

The authors are grateful for support under grants from the National Science Foundation of China (11672060) and the Cardiff University Advanced Chinese Engineering Centre.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Prengel, F., Wacker, A., Schöll, E.: Simple model for multistability and domain formation in semiconductor superlattices. Phys. Rev. B 50(3), 1705–1712 (1994)CrossRefGoogle Scholar
  2. 2.
    Laplante, J.P., Erneux, T.: Propagation failure and multiple steady states in an array of diffusion coupled flow reactors. Phys. A Stat. Mech. Appl. 188(1–3), 89–98 (1992)CrossRefGoogle Scholar
  3. 3.
    Seung, H.S.: Continuous attractors and oculomotor control. Neural Netw. 11(7–8), 1253–1258 (1998)CrossRefGoogle Scholar
  4. 4.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992)zbMATHGoogle Scholar
  5. 5.
    Lee, H.P., Harris, P.J.: Post-buckling strength of thin-walled members. Comput. Struct. 10(4), 689–702 (1979)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, N.Z., Soares, C.G.: Reliability assessment of post-buckling compressive strength of laminated composite plates and stiffened panels under axial compression. Int. J. Solids Struct. 44(22–23), 7167–7182 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Falzon, B.G., Aliabadi, M.H.: Buckling and Post Buckling Structures: Experimental. Analytical and Numerical Studies. Imperial College Press, London (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dhainaut, J.M., Guo, X., Mei, C., Spottswood, S.M., Wolfe, H.F.: Nonlinear random response of panels in an elevated thermal-acoustic environment. J. Aircr. 40(4), 683–691 (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, H., Virgin, L.N.: Finite element analysis of post-buckling dynamics in plates. Part I: an asymptotic approach. Int. J. Solids Struct. 43(13), 3983–4007 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, H., Virgin, L.N.: Finite element analysis of post-buckling dynamics in plates. Part II: a non-stationary analysis. Int. J. Solids Struct. 43(13), 4008–4027 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Liu, L., Lv, B., He, T.: The stochastic dynamic snap-through response of thermally buckled composite panels. Compos. Struct. 131, 344–355 (2015)CrossRefGoogle Scholar
  12. 12.
    Miller, B.A., McNamara, J.J., Spottswood, S.M., Culler, A.J.: The impact of flow induced loads on snap-through behavior of acoustically excited, thermally buckled panels. J. Sound Vib. 330(23), 5736–5752 (2011)CrossRefGoogle Scholar
  13. 13.
    Chen, J.S., Lin, J.S.: Dynamic snap-through of a shallow arch under a moving point load. J. Vib. Acoust. Trans. ASME 126(4), 514–519 (2004)CrossRefGoogle Scholar
  14. 14.
    Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)CrossRefGoogle Scholar
  15. 15.
    Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010)CrossRefGoogle Scholar
  16. 16.
    Kim, H.S., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)CrossRefGoogle Scholar
  17. 17.
    Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801 (2014)CrossRefGoogle Scholar
  18. 18.
    Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330(11), 2554–2564 (2011)CrossRefGoogle Scholar
  19. 19.
    Kumar, P., Narayanan, S., Adhikari, S., Friswell, M.I.: Fokker–Planck equation analysis of randomly excited nonlinear energy harvester. J. Sound Vib. 333(7), 2040–2053 (2014)CrossRefGoogle Scholar
  20. 20.
    Cherkaev, A., Cherkaev, E., Slepyan, L.: Transition waves in bistable structures. I. Delocalization of damage. J. Mech. Phys. Solids 53(2), 383–405 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Slepyan, L., Cherkaev, A., Cherkaev, E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53(2), 407–36 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nadkarni, N., Daraio, C., Kochmann, D.M.: Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation. Phys. Rev. E 90(2), 023204 (2014)CrossRefGoogle Scholar
  23. 23.
    Nadkarni, N., Arrieta, A.F., Chong, C., Kochmann, D.M., Daraio, C.: Unidirectional transition waves in bistable lattices. Phys. Rev. Lett. 116(24), 244501 (2016)CrossRefGoogle Scholar
  24. 24.
    Schultz, M.R.: A concept for airfoil-like active bistable twisting structures. J. Intell. Mater. Syst. Struct. 19(2), 157–169 (2008)CrossRefGoogle Scholar
  25. 25.
    Kuder, I.K., Arrieta, A.F., Raither, W.E., Ermanni, P.: Variable stiffness material and structural concepts for morphing applications. Prog. Aerosp. Sci. 63, 33–55 (2013)CrossRefGoogle Scholar
  26. 26.
    Lachenal, X., Daynes, S., Weaver, P.M.: Review of morphing concepts and materials for wind turbine blade applications. Wind Energy 16(2), 283–307 (2013)CrossRefGoogle Scholar
  27. 27.
    Hu, N., Burgueño, R.: Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24(6), 063001 (2015)CrossRefGoogle Scholar
  28. 28.
    Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1999)zbMATHGoogle Scholar
  29. 29.
    Soong, T.T.: Random Differential Equations in Science and Engineering. Elsevier, New York (1973)zbMATHGoogle Scholar
  30. 30.
    Cho, H.: High-Dimensional Response-Excitation PDF Methods for Uncertainty Quantification and Stochastic Modeling. Doctoral dissertation, Brown University (2015)Google Scholar
  31. 31.
    Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  32. 32.
    Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617–656 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Walters, P.: An Introduction to Ergodic Theory. Springer, New York (2000)zbMATHGoogle Scholar
  34. 34.
    Spencer Jr., B.F., Bergman, L.A.: On the numerical solution of the Fokker–Planck equation for nonlinear stochastic systems. Nonlinear Dyn. 4(4), 357–372 (1993)CrossRefGoogle Scholar
  35. 35.
    Floris, C.: Numeric solution of the Fokker–Planck–Kolmogorov equation. Engineering 5(12), 975–988 (2013)CrossRefGoogle Scholar
  36. 36.
    Masud, A., Bergman, L.A.: Solution of the four dimensional Fokker–Planck equation: still a challenge. In: Augusti, G., Schuëller, G.I., Ciampoli, M. (eds.) Proceedings of ICOSSAR 2005, Millpress Science Publishers, Rotterdam, pp. 1911–1916 (2005)Google Scholar
  37. 37.
    Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  38. 38.
    Wirsching, P.H., Shehata, A.M.: Fatigue under wide band random stresses using the rain-flow method. J. Eng. Mater. Technol. Trans. ASME 99(3), 205–211 (1977)CrossRefGoogle Scholar
  39. 39.
    Dirlik, T.: Application of Computers in Fatigue Analysis. Doctoral dissertation, University of Warwick (1985)Google Scholar
  40. 40.
    Waite, J.J., Virgin, L.N., Wiebe, R.: Competing responses in a discrete mechanical system. Int. J. Bifurc. Chaos 24(1), 1430003 (2014)CrossRefzbMATHGoogle Scholar
  41. 41.
    Caughey, T.K.: Derivation and application of the Fokker–Planck equation to discrete nonlinear dynamic systems subjected to white random excitation. J. Acoust. Soc. Am. 35(11), 1683–1692 (1963)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Avellaneda, M., Buff, R., Friedman, C., Grandechamp, N., Kruk, L., Newman, J.: Weighted Monte Carlo: a new technique for calibrating asset-pricing models. Int. J. Theor. Appl. Finance 4(1), 91–119 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Huang, W., Ji, M., Liu, Z., Yi, Y.: Steady states of Fokker–Planck equations: I. Existence. J. Dyn. Differ. Equ. 27(3–4), 721–742 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Huang, W., Ji, M., Liu, Z., Yi, Y.: Steady states of Fokker–Planck equations: Steady states of Fokker–Planck equations: II. Non-existence. J. Dyn. Differ. Equ. 27(3–4), 743–762 (2015)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Center for Computational MechanicsDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.School of EngineeringCardiff UniversityCardiffUK
  3. 3.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and MechanicsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations