Advertisement

Parameters identification and adaptive tracking control of uncertain complex-variable chaotic systems with complex parameters

  • Fangfang ZhangEmail author
  • Kai Sun
  • Yawen Chen
  • Haibo Zhang
  • Cuimei Jiang
Original Paper
  • 39 Downloads

Abstract

As for chaotic nonlinear systems with real parameters, many studies about tracking control have been carried out using fixed control strength. However, tracking control for complex-variable chaotic systems (CVCSs) including complex parameters has not been investigated so far, even though CVCSs have potential applications in various important fields. We present the tracking control method and the parameter identification procedure aiming at CVCSs with complex parameters. Firstly, we propose an adaptive tracking controller between two arbitrary bounded CVCSs, in which dynamic control strength and convergence factors are adopted to augment the adaptivity of the controller and adjust the rapidity of convergence. Secondly, according to persistent excitation and linear independence (LI), we derive the necessary conditions and sufficient conditions separately that uncertain complex parameters converge to the real values, and we extend LI from real functions to complex-variable functions. Then, we present a scheme to ensure the convergence of all uncertain parameters to the real values. We verify the proposed methods through simulations including both interference and random noise. The simulation outcomes exhibit the robustness and validity of our approaches.

Keywords

Tracking control Parameter identification Chaotic system Linear independence 

Notes

Acknowledgements

This work is partially supported by National Nature Science Foundation of China (Nos. 61603203, 61773010), Nature Science Foundation of Shandong Province (No. ZR2017MF064), Scientific Research Plan of Universities in Shandong Province (J18KA352) and Doctor Project of Qilu University of Technology (No. 0412048416).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The complex Lorenz equations. Physica D 4(2), 39–163 (1982)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Gibbon, J.D., McGuinness, M.J.: The real and complex Lorenz equations in rotating fluids and laser. Physica D 5(1), 108–122 (1982)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Fowler, A.C., Gibbon, J.D., McGuinnes, M.J.: The real and complex Lorenz equations and their relevance to physical systems. Physica D 7(1), 126–134 (1983)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Zeghlache, H., Mandel, P.: Influence of detuning on the properties of laser equations. J. Opt. Soc. Am. B 2(1), 18–22 (1985)Google Scholar
  5. 5.
    Ning, C.Z., Haken, H.: Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41(7), 3826–3837 (1990)Google Scholar
  6. 6.
    Mahmoud, G.M., Al-Kashif, M.A., Aly, S.A.: Basic properties and chaotic synchronization of complex Lorenz system. Int. J. Mod. Phys. C 18(2), 253–265 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Zivkovic, T., Rypdal, K.: Experimental evidence of low-dimensional chaotic convection dynamics in a toroidal magnetized plasma. Phys. Rev. E 77(3), 037401 (2008)Google Scholar
  8. 8.
    Mahmoud, G.M., Bountis, T.: The dynamics of systems of complex nonlinear oscillators: a review. Int. J. Bifurc. Chaos 14(11), 3821–3846 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization for complex Chen and L\(\ddot{u}\) systems. Int. J. Bifurc. Chao 17(12), 4295–4308 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Mahmoud, G.M., Mahmoud, E.E., Arafa, A.A.: On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications. Phys. Scr. 87(5), 055002 (2013)zbMATHGoogle Scholar
  11. 11.
    Liu, S.T., Zhang, F.F.: Complex function projective synchronization of complex chaotic system and its applications in secure communication. Nonlinear Dyn. 76(2), 51087–1097 (2014)MathSciNetGoogle Scholar
  12. 12.
    Mahmoud, E.E., Abo-Dahab, S.M.: Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model. Chaos Soliton Fract. 106(1), 273–284 (2018)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mahmoud, G.M., Aly, S.A., Al-Kashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51(1–2), 171–181 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Mahmoud, G.M., Mahmoud, E.E., Ahmed, M.E.: On the hyperchaotic complex L\(\ddot{u}\) system. Nonlinear Dyn. 58(4), 725–738 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mahmoud, E.E.: Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Comput. Model. 55(7–8), 1951–1962 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different chaotic complex Chen and L\(\ddot{u}\) systems. Nonlinear Dyn. 55(1–2), 43–53 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mahmoud, G.M., Mahmoud, E.E.: Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dyn. 61(1–2), 141–152 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mahmoud, G.M., Mahmoud, E.E.: Synchronization and control of hyerchaotic complex Lorenez system. Math. Comput. Simul. 80(12), 2286–2296 (2010)zbMATHGoogle Scholar
  19. 19.
    Mahmoud, G.M., Mahmoud, E.E.: Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. 67(2), 1613–1622 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62(4), 875–882 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Liu, S., Liu, P.: Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal. Real 12(6), 3046–3055 (2011)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Liu, P., Liu, S.T.: Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances. Nonlinear Dyn. 70(1), 585–599 (2012)MathSciNetGoogle Scholar
  23. 23.
    Zhang, F.F., Liu, S.T.: Full state hybrid projective synchronization and parameters identification for uncertain chaotic (hyperchaotic) complex systems. J. Comput. Nonlinear Dyn. 9(2), 021009 (2014)Google Scholar
  24. 24.
    Zhang, F.F., Liu, S.T.: Adaptive complex function projective synchronization of uncertain complex chaotic systems. J. Comput. Nonlinear Dyn. 11(1), 011013 (2016).  https://doi.org/10.1115/1.4030893 Google Scholar
  25. 25.
    Liu, J., Liu, S.T., Sprott, J.C.: Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dyn. 83(1–2), 1109–1121 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Liu, J., Liu, S.T.: Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters. Appl. Math. Model. 48, 440–450 (2017)MathSciNetGoogle Scholar
  27. 27.
    Fradkov, A.L., Pogromsky, A.Y.: Speed gradient control of chaotic continuous-time systems. IEEE Trans. Circuits Syst. I 43(11), 907–914 (1996)MathSciNetGoogle Scholar
  28. 28.
    Fotsin, H.B., Daafouz, J.: Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification. Phys. Lett. A 339(3–5), 304–315 (2005)zbMATHGoogle Scholar
  29. 29.
    Huang, L., Wang, M., Feng, R.: Parameters identification and adaptive synchronization of chaotic systems with unknown parameters. Phys. Lett. A 342(4), 299–304 (2005)zbMATHGoogle Scholar
  30. 30.
    Park, J.H.: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J. Comput. Appl. Math. 213(1), 288–293 (2008)zbMATHGoogle Scholar
  31. 31.
    Antonio, L., Arturo, Z.: Adaptive tracking control of chaotic systems with applications to synchronization. IEEE Trans. Circuits Syst. I 54(9), 2019–2029 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Mu, X.W., Pei, L.J.: Synchronization of the near-identical chaotic systems with the unknown parameters. Appl. Math. Model 34(7), 1788–1797 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Li, Q.C.: An open-plus-closed-loop control for discrete chaos and hyperchaos. Phys. Lett. A 281(5), 327–333 (2001)MathSciNetGoogle Scholar
  34. 34.
    Li, Z., Chen, G., Shi, S., Han, C.: Robust adaptive tracking control for a class of uncertain chaotic systems. Phys. Lett. A 310(1), 40–43 (2003)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Huang, D.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 71(3), 037203 (2005)MathSciNetGoogle Scholar
  36. 36.
    Zhang, F.F., Sun, K., Chen, Y.W., Zhang, H.B.: Adaptive tracking control and parameter identification for uncertain complex-variable chaotic systems. In: The 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2018), July 9–12, 2018, Auckland, New ZealandGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering and AutomationQilu University of Technology (Shandong Academy of Sciences)JinanChina
  2. 2.Department of Computer ScienceUniversity of OtagoDunedinNew Zealand
  3. 3.School of ScienceQilu University of Technology (Shandong Academy of Sciences)JinanChina

Personalised recommendations