Successive lag synchronization on nonlinear dynamical networks via aperiodically intermittent control

  • Yinxing Zhang
  • Kezan LiEmail author
Original Paper


Successive lag synchronization (SLS) for nonlinear dynamical networks is investigated by using aperiodically intermittent control. Different from previous works about the SLS, the proposed controllers could be discontinuous and aperiodic. Aperiodically intermittent controllers are proposed to realize SLS on the dynamical networks with and without communication delay. Furthermore, several sufficient conditions are obtained by applying the Lyapunov function method to make SLS achieve global stability. Finally, a loop-shaped network example and a chain-shaped network example are provided to verify correctness of our results.


Successive lag synchronization Aperiodically intermittent control Communication delay 



This work was supported jointly by the National Natural Science Foundation of China (Nos. 61663006, 11661026), Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201612) and Guangxi Natural Science Foundation (No. 2015GXNSFBB139002). The authors are grateful to the editor and anonymous reviewers for their constructive comments and suggestions that helped to improve the content as well as the quality of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Wu, C.: Synchronization and convergence of linear dynamics in random directed networks. IEEE Trans. Autom. Control 51, 1207–1210 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Schmidl, T.M., Cox, D.C.: Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 45, 1613–1621 (1997)CrossRefGoogle Scholar
  4. 4.
    Wang, J., Zhang, H., Wang, Z., Shan, Q.: Local synchronization criteria of markovian nonlinearly coupled neural networks with uncertain and partially unknown transition rates. IEEE Trans. Syst. Man Cybern. Syst. 47, 1953–1964 (2017)CrossRefGoogle Scholar
  5. 5.
    Li, Z., Duan, Z., Cheng, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 213–224 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yu, W., Chen, G., Lu, J.: On pinning synchronization of complex dyanamical networks. Automatica 45, 429–435 (2008)CrossRefGoogle Scholar
  8. 8.
    Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dyn. 88, 2637–2649 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, W., Liu, L., Lu, X.: Intermittent synchronization of reaction-diffusion neural networks with mixed delays via Razumikhin technique. Nonlinear Dyn. 87, 535–551 (2017)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, W., Zhong, J., Zheng, W.: Delay-independent stabilization of a class of time-delay systems via periodically intermittent control. Automatica 71, 89–97 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Xie, Q., Chen, G., Bollt, E.M.: Hybrid chaos synchronization and its application in information processing. Math. Comput. Model. 35, 145–163 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wei, G., Jia, Y.: Synchronization-based image edge detection. Europhys. Lett. 59, 814–819 (2002)CrossRefGoogle Scholar
  13. 13.
    Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 153–156 (1993)CrossRefGoogle Scholar
  14. 14.
    Martin, M., Poon, S.H.: Returns synchronization and daily correlation dynamics between international stock markets. J. Bank. Finance 25, 1805–1827 (2001)CrossRefGoogle Scholar
  15. 15.
    Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62, 875–882 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lin, W., He, Y.: Complete synchronization of the noise-perturbed Chua’s circuits. Chaos 15, 837–845 (2005)CrossRefGoogle Scholar
  17. 17.
    Feng, J., Wang, J., Xu, C., Austin, F.: Cluster synchronization of nonlinearly coupled complex networks via pinning control. Discrete Dyn. Nat. Soc. 2011, 309–323 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tang, Z., Park, J.H., Feng, J.: Novel approaches to pin cluster synchronization on complex dynamical networks in Lur’e forms. Commun. Nonlinear Sci. Numer. Simulat. 57, 422–428 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816–1819 (1996)CrossRefGoogle Scholar
  20. 20.
    Shahverdiev, E.M., Shore, K.A.: Generalized synchronization in time-delayed systems. Phys. Lett. A 292, 320–324 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Li, G.: Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32, 1786–1790 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, C., Liao, X., Wong, K.: Lag synchronization of hyperchaos with application to secure communications. Chaos Solitons Fractals 23, 183–193 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yu, W., Cao, J.: Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification. Physica A 375, 467–482 (2007)CrossRefGoogle Scholar
  24. 24.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 44, 4193–4196 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Yang, X., Zhu, Q., Huang, C.: Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal. Real World Appl. 12, 93–105 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Li, K., Yu, W., Ding, Y.: Successive lag synchronization on nonlinear dynamical networks via linear feedback control. Nonlinear Dyn. 80, 421–430 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yamchi, M.H., Esfanjani, R.M.: Distributed predictive formation control of networked mobile robots subject to communication delay. Robot. Autom. Syst. 91, 194–207 (2017)CrossRefGoogle Scholar
  28. 28.
    Wang, A.: Event-based consensus control for single-integrator networks with communication time delays. Neurocomputing 173, 1715–1719 (2016)CrossRefGoogle Scholar
  29. 29.
    Zhang, X., Wei, A., Li, K.: Successive lag synchronization on dynamical networks with communication delay. Chin. Phys. B 25, 466–472 (2016)Google Scholar
  30. 30.
    Zochowski, M.: Intermittent dynamical control. Physica D 145, 181–190 (2000)CrossRefzbMATHGoogle Scholar
  31. 31.
    Cai, S., Hao, J., He, Q., Liu, Z.: Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control. Phys. Lett. A 375, 1965–1971 (2011)CrossRefzbMATHGoogle Scholar
  32. 32.
    Yu, J., Hu, C., Jiang, H., Teng, Z.: Exponential lag synchronization for delayed fuzzy cellular neural networks via periodically intermittent control. Math. Comput. Simulat. 82, 895–908 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhang, W., Huang, J., Wei, P.: Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control. Appl. Math. Model. 35, 612–620 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Chen, W., Ding, K., Lu, X.: Disturbance-observer-based control design for a class of uncertain systems with intermittent measurement. J. Frankl. Inst. 354, 5266–5279 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Chen, W., Zhong, J., Jiang, Z., Lu, X.: Periodically intermittent stabilization of delayed neural networks based on piecewise Lyapunov functions/functionals. Circuits Syst. Signal Process 33, 3757–3782 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tang, Z., Park, J.H., Zheng, W.: Distributed impulsive synchronization of Lur’e dynamical networks via parameter variation methods. Int. J. Robust Nonlinear Control 48, 1001–1014 (2017)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Wei, W., Zhou, W., Chen, T.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 829–839 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang, W., Li, C., Huang, T., Xiao, M.: Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control. Neural Netw. 71, 105–111 (2015)CrossRefzbMATHGoogle Scholar
  39. 39.
    Liu, X., Liu, Y., Zhou, L.: Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control. Neurocomputing 173, 759–767 (2016)CrossRefGoogle Scholar
  40. 40.
    Lei, X., Cai, S., Jiang, S., Liu, Z.: Adaptive outer synchronization between two complex delayed dynamical networks via aperiodically intermittent pinning control. Neurocomputing 222, 26–35 (2017)CrossRefGoogle Scholar
  41. 41.
    Liu, X., Chen, T.: Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans. Autom. Control 60, 3316–3321 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Delellis, P., Bernardo, M.D., Russo, G.: On QUAD, Lipschitz, and contracting vector fields for consensus and synchronization of networks. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 576–583 (2011)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Liu, M., Jiang, H., Hu, C.: Finite-time synchronization of delayed dynamical networks via aperiodically intermittent control. J. Frankl. Inst. 354, 5374–5397 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Liu, X., Chen, T.: Synchronization of linearly coupled networks with delays via aperiodically intermittent pinning control. IEEE Trans. Neural. Netw. Learn. 26, 2396–2407 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  46. 46.
    Yang, X., Cao, J.: Stochastic synchronization of coupled neural networks with intermittent control. Phys. Lett. A 373, 3259–3272 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Olfati, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Kennedy, M.P.: Three steps to chaos\(-\)II: a Chua’s circuit primer. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40, 657–674 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wang, J., Ma, X., Wen, X., Sun, Q.: Pinning lag synchronization of drive-response complex networks via intermittent control with two different switched periods. Physica A 461, 278–287 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematics and Computing Science, Guangxi Key Laboratory of Cryptography and Information SecurityGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations