Advertisement

Controlling and stabilizing unpredictable behavior of metabolic reactions and carcinogenesis in biological systems

  • Larysa DzyubakEmail author
  • Oleksandr Dzyubak
  • Jan Awrejcewicz
Original Paper
  • 35 Downloads

Abstract

Developing new designs and optimization of the cancer treatment is extremely important task. In this work, the nonlinear multi-scale diffusion cancer invasion model that describes the interactions of the tumor cells, matrix-metalloproteinases, matrix-degradative enzymes and oxygen is studied. The conditions under which the cancerous biological system exhibits chaotic behavior were obtained by means of the method based on wandering trajectories analysis. Regions of parameters leading to carcinogenesis in the biological system studied were found in control parameter planes ‘number of tumor cells versus diffusion saturation level.’ Significant influence of the biological system initial state to carcinogenesis was ascertained and illustrated by regions in phase planes of initial conditions. Evolution of all regions obtained is presented depending on glucose level.

Keywords

Tumor Metabolic reactions Carcinogenesis Chaotic attractors Phase spaces Control parameters 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

References

  1. 1.
    Vogelzang, N.J., Benovitz, S.I., et al.: Clinical cancer advances 2011: annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol. 30, 88–109 (2012)CrossRefGoogle Scholar
  2. 2.
    Fraass, B.A., Moran, J.M.: Quality, technology and outcomes: evolution and evaluation of new treatments and/or new technology. Semin. Radiat. Oncol. 22, 3–10 (2012)CrossRefGoogle Scholar
  3. 3.
    Liu, D., Ajlouni, M., Jin, J.-Y., et al.: Analysis of outcomes in radiation oncology: an integrated computational platform. Med. Phys. J. 36(5), 1680–1689 (2009)CrossRefGoogle Scholar
  4. 4.
    Lambin, P., Stiphout, R.G.P.M., Starmans, M.H.W., et al.: Predicting outcomes in radiation oncology multifactorial decision support systems. Nat. Rev. Clin. Oncol. 10(1), 27–40 (2013)CrossRefGoogle Scholar
  5. 5.
    Oh, J.H., Kerns, S., Ostrer, H., et al.: Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci. Rep. 7, 1–10 (2017)CrossRefGoogle Scholar
  6. 6.
    Incoronato, M., Aiello, M., Infante, T., et al.: Radiogenomic analysis of oncological data: a technical survey. Int. J. Mol. Sci. 18(4), 805 (2017)CrossRefGoogle Scholar
  7. 7.
    Baumann, M., Petersen, C.: TCP and NTCP: a basic introduction. Rays 30(2), 99–104 (2005)Google Scholar
  8. 8.
    Baumann, M., Petersen, C., Krause, M.: TCP and NTCP in preclinical and clinical research in Europe. Rays 30(2), 121–126 (2005)Google Scholar
  9. 9.
    Bentzen, S.M., Constine, L.S., Deasy, J.O., et al.: Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 76(3), S3–S9 (2010)CrossRefGoogle Scholar
  10. 10.
    Marks, L.B., Yorke, E.D., Jackson, A., et al.: Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 76(3), S10–S19 (2010)CrossRefGoogle Scholar
  11. 11.
    Miller, E.D., Fisher, J.L., Haglund, K.E., et al.: The addition of chemotherapy to radiation therapy improves survival in elderly patients with stage III non-small cell lung cancer. J. Thorac. Oncol. 13(3), 426–435 (2018).  https://doi.org/10.1016/j.jtho.2017.11.135 CrossRefGoogle Scholar
  12. 12.
    Nakamichi, S., Horinouchi, H., Asao, T., et al.: Comparison of radiotherapy and chemoradiotherapy for locoregional recurrence of non-small-cell lung cancer developing after surgery. Clin Lung Cancer. 18(6), e441–e448 (2017).  https://doi.org/10.1016/j.cllc.2017.05.005 CrossRefGoogle Scholar
  13. 13.
    Zhu, J., Li, R., Tiselius, E., et al.: Immunotherapy (excluding checkpoint inhibitors) for stage I to III non-small cell lung cancer treated with surgery or radiotherapy with curative intent. Cochrane Database Syst Rev. 12, CD011300 (2017).  https://doi.org/10.1002/14651858.CD011300.pub2 Google Scholar
  14. 14.
    Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M.: Mathematical modelling of tumor invasion and metastasis. J. Theor. Med. 2, 129–154 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Anderson, A.R.A.: A hybrid mathematical model of solid tumour invasion. Math. Med. Biol. 22, 163–186 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Komarova, N.L.: Building stochastic models for cancer growth and treatment. In: Deisboeck, T., Stamatakos, G.S. (eds.) Multiscale Cancer Modeling, pp. 339–358. CRC Press, London, New York (2010)CrossRefGoogle Scholar
  17. 17.
    Ivancevic, T.T., Bottema, M.J., Jain, L.C.: A theoretical model of chaotic attractor in tumor growth and metastasis. Cornell University Library’s arXiv: 0807.4272, pp. 1–17 (2008)
  18. 18.
    Harney, M., Yim, W.: Chaotic attractors in tumor growth and decay: a differential equation model. In: Vlamos P., Alexiou A. (eds.) GeNeDis 2014. Advances in Experimental Medicine and Biology, vol. 820, pp. 193–206. Springer, Cham (2014)Google Scholar
  19. 19.
    Harney, M., Seal, J.: Design of a compensator network to stabilize chaotic tumor growth. Adv. Exp. Med. Biol. 988, 31–37 (2017).  https://doi.org/10.1007/978-3-319-56246-9_2 CrossRefGoogle Scholar
  20. 20.
    Beerenwinkel, N., Schwarz, R.F., Gerstung, M., Markowetz, F.: Cancer evolution: mathematical models and computational inference. Syst. Biol. 64(1), e1–e25 (2015).  https://doi.org/10.1093/sysbio/syu081 CrossRefGoogle Scholar
  21. 21.
    Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.S.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ahmed, E.: Fractals and chaos in cancer models. Int. J. Theor. Phys. 32(2), 353–355 (1993)CrossRefGoogle Scholar
  23. 23.
    Dalgleish, A.: The relevance of non-linear mathematics (chaos theory) to the treatment of cancer, the role of the immune response and the potential for vaccines. Q. J. Med. 92, 347–359 (1999)CrossRefGoogle Scholar
  24. 24.
    Crawford, S.A.: A “chaotic” approach to the treatment of advanced cancer. J. Tradit. Med. Clin. Nat. 6(3), 1–5 (2017).  https://doi.org/10.4172/25734555.1000232 Google Scholar
  25. 25.
    Maddali, R.K., Ahluwalia, D., Chaudhuri, A., Hassan, S.S.: Dynamics of a three dimensional chaotic cancer model. Int. J. Math. Trends Technol. 53(5), 353–368 (2018).  https://doi.org/10.14445/22315373/IJMTT-V53 CrossRefGoogle Scholar
  26. 26.
    Itik, M., Banks, S.P.: Chaos in a three-dimensional cancer model. Int. J. Bifurc. Chaos 20(1), 71–79 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Berezovoj, V.P., Bolotin, Y.L., Dzyubak, A.P., et al.: Nuclear stochastic resonance. J. Exp. Theor. Phys. Lett. 74, 411–414 (2001)CrossRefGoogle Scholar
  28. 28.
    Berezovoj, V.P., Bolotin, Y.L., Dzyubak, O.P., et al.: Stochastic resonance in a periodically modulated dissipative nuclear dynamics. Fermilab Report, Jan 2001 FERMILAB-CONF-01-009-T. http://lss.fnal.gov/archive/2001/conf/Conf-01-009-T.pdf
  29. 29.
    Radunskaya, A., Kim, R., Woods II, T.: Mathematical modeling of tumor immune interactions: a closer look at the role of a PD-L1 inhibitor in cancer immunotherapy. Spora J. Biomath. 4(1), 25–41 (2018).  https://doi.org/10.30707/SPORA4.1Radunskaya Google Scholar
  30. 30.
    López, Á.G., Seoane, J.M., Sanjuán, M.A.F.: Dynamics ofthe cell-mediated immune response to tumour growth. Philos. Trans. A Math. Phys. Eng. Sci. 375, 1–14 (2017).  https://doi.org/10.1098/rsta.2016.0291 CrossRefzbMATHGoogle Scholar
  31. 31.
    López, Á.G., Seoane, J.M., Sanjuán, M.A.F.: Destruction of solid tumors by immune cells. Commun. Nonlinear Sci. Numer. Simul. 44, 390–403 (2017).  https://doi.org/10.1016/j.cnsns.2016.08.020 MathSciNetCrossRefGoogle Scholar
  32. 32.
    López, Á.G., Seoane, J.M., Sanjuán, M.A.F.: Decay dynamics of tumors. PLoS One 11(6), 1–15 (2016).  https://doi.org/10.1371/journal.pone.0157689 CrossRefGoogle Scholar
  33. 33.
    Awrejcewicz, J., Dzyubak, L.P.: Chaos caused by hysteresis and saturation phenomenon in 2-dof vibrations of the rotor supported by the magneto-hydrodynamic bearing. Int. J. Bifurc. Chaos 15(6), 2041–2055 (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Awrejcewicz, J., Dzyubak, L.P.: Modelling, chaotic behavior and control of dissipation properties of hysteretic systems. In: Elhadj, Z. (ed.) Models and Applications of Chaos Theory in Modern Sciences, pp. 645–667. CRC Press Taylor & Francis Group, Boca Raton (2011)CrossRefGoogle Scholar
  35. 35.
    Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R.: Molecular Biology of the Gene. Pearson, New York (2014)Google Scholar
  36. 36.
    Prigogine, I., Stengers, I.: Order Out of Chaos. Heinemann, London (1984)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsNational Technical UniversityKharkivUkraine
  2. 2.Ascension All Saint Cancer CenterRacineUSA
  3. 3.Department of Automation, Biomechanics and MechatronicsLodz University of TechnologyLodzPoland

Personalised recommendations