Advertisement

Early warning system for rainfall-triggered landslides based on real-time probabilistic hazard assessment

  • Oscar Correa
  • Francisco García
  • Gabriel Bernal
  • Omar Darío CardonaEmail author
  • Carlos Rodriguez
Original Paper
  • 91 Downloads

Abstract

A methodology to define rainfall-landslide thresholds, using a probabilistic model in which the accumulated rainfall at any time is treated as a random variable, is proposed. The region under study is divided into areas of homogeneous rain hazard. For each homogeneous area, a probability model is fitted using state-of-the-art statistical methods, for each accumulation time considered. Thresholds are obtained by the definition of confidence intervals. Instantaneous accumulated rains, measured in real-time, are used to calculate the instantaneous probabilities of a landslide at each area and accumulation time. The maximum instantaneous probability determines the critical accumulated rain and sets the issued warning level. In addition, the model is tested, retrospectively, with the data for the disaster of April 19, 2017, in Manizales, Colombia, where 38 rainfall-triggered landslides killed 17 people and affected more than 3126 families.

Keywords

Landslides Rainfall thresholds Warning systems Probabilistic model 

Notes

References

  1. Ahmad R (2003) Developing early warning systems in Jamaica: rainfall thresholds for hydrological hazards. In: en National disaster management conference, Ocho Rios, St. Ann, Jamaica, p 910. http://www.mona.uwi.edu/uds/rainhazards_files/frame.htm
  2. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73(3–4):247–265.  https://doi.org/10.1016/j.enggeo.2004.01.007 CrossRefGoogle Scholar
  3. Aleotti P, Baldelli P, Bellardone G, Quaranta N, Tresso F, Troisi C, Zani A (2002) Soil slips triggered by October 13–16, 2000 flooding event in the Piedmont Region (Northwest Italy): critical analysis of rainfall data. Geologia Tecnica e Ambientale 1:15–25Google Scholar
  4. Annunziati A, Focardi A, Focardi P, Martello S, Vannocci P (2000) Analysis of the rainfall thresholds that induced debris flows in the area of Apuan Alps-Tuscany, Italy (19 June 1996 storm). In: Proceedings of EGS Plinius conference on mediterranean storms, Maratea, Italy, pp 485–493Google Scholar
  5. Arboleda R, Martinez M (1996) 1992 Lahars in the pasig-potrero river system, fire and mud; Eruptions and Lahars of Mount Pinatubo, The PhilippinesGoogle Scholar
  6. Bacchini M, Zannoni A (2003) Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy). Nat Hazards Earth Syst Sci 3(1/2):71–79.  https://doi.org/10.5194/nhess-3-71-2003 CrossRefGoogle Scholar
  7. Barbero S, Rabuffetti D, Zaccagnino M (2004) Una metodologia per la definizione delle soglie pluviometriche a supporto dell’emissione dell’allertamento. In: en 29° Convegno Nazionale di Idraulica e Costruzioni Idrauliche, pp 211–217Google Scholar
  8. Baum RL, Godt JW, Harp EL, McKenna JP, McMullen SR (2005) Early warning of landslides for rail traffic between Seattle and Everett, Washington, USA. In: Landslide Risk Management. CRC Press, pp 741–750Google Scholar
  9. Bell FG, Maud RR (2000) Landslides associated with the colluvial soils overlaying the Natal group in the greater Durban region of Natal, South Africa. Environ Geol 39(9):1029–1038.  https://doi.org/10.1007/s002549900077 CrossRefGoogle Scholar
  10. Bernal GA, Salgado-Gálvez MA, Zuloaga D, Tristancho J, González D, Cardona OD (2017) Integration of probabilistic and multi-hazard risk assessment within urban development planning and emergency preparedness and response: application to manizales, Colombia. Int J Disaster Risk Sci 8(3):270–283CrossRefGoogle Scholar
  11. Bhandari RK, Senanayake KS, Thayalan N (1991) Pitfalls in the prediction on landslide through rainfall data. In: Bell DH (ed) Landslides, 2nd edn. A.A. Balkema, Rotterdam, pp 887–890Google Scholar
  12. Bolley S, Oliaro P (1999) Analisi dei debris flows in alcuni bacini campione dell’Alta Val Susa. Geoingegneria Ambientale e Mineraria, Marzo, pp 69–74Google Scholar
  13. Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler Ser A Phys Geogr 62(1/2):23CrossRefGoogle Scholar
  14. Calcaterra D, Parise M, Palma B, Pelella L (2000) The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy. In: Landslides in Research, Theory and Practice, Proceedings of the 8th International Symposium on Landslides held in Cardiff on 26–30 June 2000. Thomas Telford Publishing, pp 1–209Google Scholar
  15. Cancelli A, Nova R (1985) Landslides in soil debris cover triggered by rainstorm in Valtellina (Central Alps -Italy). In: en IV Int. Conf. and field workshop on Landslides, pp 267–272Google Scholar
  16. Cannon S (1988) Regional rainfall-threshold conditions for abundant debris-flow activity. In: en Floods, and Marine Effects of the Storm of January 3–5, 1982, in the San Francisco Bay region, California, pp 35–42Google Scholar
  17. Cannon SH, Ellen SD (1985) Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. Calif Geol 38(12):267–272Google Scholar
  18. Cannon SH, Gartner JE (2005) Wildfire-related debris flow from a hazards perspective. In: en Debris-flow hazards and related phenomena. Springer, Berlin, pp 363–385.  https://doi.org/10.1007/3-540-27129-5_15
  19. Canuti P, Focardi P, Garzonio CA (1985) Correlation between rainfall and landslides. Bull Int Assoc Eng Geol 32(1):49–54.  https://doi.org/10.1007/bf02594765 CrossRefGoogle Scholar
  20. Cardona OD, Bernal G, Zuloaga D, Escovar MA, Villega, C, Gonzáles D, Molina JF (2016) Hazard and risk modelling system of Bogotá.  https://doi.org/10.13140/RG.2.2.31828.60800
  21. Ceriani M, Lauzi S, Padovan N (1992) Rainfalls and landslides in the alpine area of Lombardia Region-Central Alps-Italy. In: Proceedings of the VII international congress interpraevent 1992, Bern, pp 9–20Google Scholar
  22. Chien-Yuan C, Tien-Chien C, Fan-Chieh Y, Wen-Hui Y, Chun-Chieh T (2005) Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ Geol 47(5):715–724CrossRefGoogle Scholar
  23. Clarizia M, Gullà G, Sorbino G (1996) Sui meccanismi di innesco dei soil slip. In: en international conference, prevention of hydrogeological hazards: the role of scientific research, pp 585–597Google Scholar
  24. Coe JA, Kinner DA, Godt JW (2008) Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology. 96(3–4):270–297CrossRefGoogle Scholar
  25. Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30(1–2):79–93.  https://doi.org/10.1016/S0169-555X(99)00046-X CrossRefGoogle Scholar
  26. Corominas J, Ayala FJ, Cendrero A, Chacón J, Díaz de Terán JR, Gonzáles A, Moja J, Vilaplana JM (2005) Impacts on natural hazard of climatic origin. ECCE final report: a preliminary assessment of the impacts in Spain due to the effects of climate change. Ministerio de Medio AmbienteGoogle Scholar
  27. CORPOCALDAS (2012) Bases de datos de deslizamientos 2001–2012 (documento interno). Corporación Regional Autónoma de Caldas–CORPOCALDAS, Manizales (Colombia)Google Scholar
  28. Crosta GB, Frattini P (2000) Rainfall thresholds for soil slip and debris flow triggering. In: en proceedings of the EGS 2nd Plinius conference on Mediterranean Storms, pp 463–488. https://www.researchgate.net/profile/P_Frattini/publication/285298340_Rainfall_thresholds_for_triggering_soil_slips_and_debris_flow/links/58eb31240f7e9b978f8411ce/Rainfall-thresholds-for-triggering-soil-slips-and-debris-flow.pdf
  29. Floris M, Mari M, Romeo RW, Gori U (2004) Modelling of landslide-triggering factors-a case study in the northern Apennines, Italy. In: Engineering geology for infrastructure planning in Europe. Springer, BerlinCrossRefGoogle Scholar
  30. Giannecchini R (2005) Rainfall triggering soil slips in the southern Apuan Alps (Tuscany, Italy). Adv Geosci 2:21–24.  https://doi.org/10.5194/adgeo-2-21-2005 CrossRefGoogle Scholar
  31. Govi M, Sorzana PF (1980) Landslide susceptibility as function of critical rainfall amount in Piedmont basin (North-Western Italy). Stud geomorphol, Carpatho-BalcGoogle Scholar
  32. Govi M, Mortara G, Sorzana PF (1985) Eventi idrologici e frane. Geologia Applicata Ingegneria 20(2):359–375Google Scholar
  33. Guidicini G, Iwasa OY (1977) Tentative correlation between rainfall and landslides in a humid tropical environment. Bull Int Assoc Eng Geol 16(1):13–20.  https://doi.org/10.1007/BF02591434 CrossRefGoogle Scholar
  34. Guzzetti F, Peruccacci S, Rossi M, Balducci V (2018) Rainfall Thresholds for the Initiation of Landslides, Istituto di Ricerca per la Protezione Idrogeologica. Italy.  http://rainfallthresholds.irpi.cnr.it/. Retrieved 7 Aug 2018
  35. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3–4):239–267CrossRefGoogle Scholar
  36. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17CrossRefGoogle Scholar
  37. Heyerdahl H, Harbitz CB, Domaas U, Sandersen F, Tronstad K, Nowacki F, Engen A, Kjekstad O, Devoli G, Buezo SG, Diaz MR (2003) Rainfall induced lahars in volcanic debris in Nicaragua and El Salvador: practical mitigation. In: Proceedings of international conference on fast slope movements—prediction and prevention for risk mitigation, IC-FSM2003. Patron Pub, Naples, pp 275–282Google Scholar
  38. Hong Y, Hiura H, Shino K, Sassa K, Suemine A, Fukuoka H, Wang G (2005) The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides 2(2):97–105CrossRefGoogle Scholar
  39. Innes JL (1983) Debris flows. Prog Phys Geogr 7(4):469–501.  https://doi.org/10.1177/030913338300700401 CrossRefGoogle Scholar
  40. Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54(3–4):137–156.  https://doi.org/10.1016/S0169-555X(02)00339-2 CrossRefGoogle Scholar
  41. Jan C, Chen C (2005) Debris flows caused by Typhoon Herb in Taiwan, debris flow hazards and related phenomena. Springer, Berlin.  https://doi.org/10.1007/3-540-27129-5_21 CrossRefGoogle Scholar
  42. Jibson RW (1989) Debris flows in southern Puerto Rico. en Geological Society of America Special Papers.  https://doi.org/10.1130/spe236-p29 CrossRefGoogle Scholar
  43. Kanji MA, Massad F, Cruz PT (2003) Debris flows in areas of residual soils: occurrence and characteristics. In: International workshop on occurrence and machanisms of flows in natural slopes and earthfills, (December 1999), pp 1–11Google Scholar
  44. Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler Ser A Phys Geogr 75(1–2):13–23.  https://doi.org/10.1080/04353676.1993.11880379 CrossRefGoogle Scholar
  45. Lumb PB (1975) Slope failures in Hong Kong, Q.J. Engineering Geologist. GeoSci World 8:31–65.  https://doi.org/10.1144/gsl.qjeg.1975.008.01.02 CrossRefGoogle Scholar
  46. Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46(1–2):1–17.  https://doi.org/10.1016/S0169-555X(01)00162-3 CrossRefGoogle Scholar
  47. Montgomery DR, Schmidt KM, Greenberg HM, Dietrich WE (2000) Forest clearing and regional landsliding. Geology 28(4):311–314CrossRefGoogle Scholar
  48. Moser M, Hohensinn F (1983) Geotechnical aspects of soil slips in Alpine regions. Eng Geol 19(3):185–211.  https://doi.org/10.1016/0013-7952(83)90003-0 CrossRefGoogle Scholar
  49. Naidu S, Sajinkumar KS, Oommen T, Anuja VJ, Samuel RA, Muraleedharan C (2018) Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci Front 9(6):1871–1882CrossRefGoogle Scholar
  50. National Research Council (2004) Partnerships for reducing landslide risk: assessment of the national landslide hazards mitigation strategy. National Academies Press, EdinburghGoogle Scholar
  51. Nilsen (1975) Influence of rainfall and ancient landslide deposits on recent landslides (1950–1971) in urban areas of Contra Costa County, California. Usgs 1388, p 24. https://pubs.er.usgs.gov/publication/b1388. Retrieved 21 Mar 2018
  52. Oberste-Lehn D (1976) Slope stability of the Lomerias Muertas area, San Benito County, California. http://adsabs.harvard.edu/abs/1976PhDT5O. Retrieved 7 Feb 2012
  53. Onodera T, Yoshinaka R, Kazama H (1974) Slope failures caused by heavy rainfall in Japan. J Jpn Soc Eng Geol 15(4):191–200.  https://doi.org/10.5110/jjseg.15.191 CrossRefGoogle Scholar
  54. Paronuzzi P, Coccolo A, Garlatti G (1998) Eventi meteorici critici e debris flow nei bacini montani del Friuli. L’acqua, pp 39–50. http://www.gruppocp.it/download/articoli/ACQUA_1998_debris_flows.pdf. Accedido 11 de abril de 2018
  55. Pasuto A, Silvano S (1998) Rainfall as a trigger of shallow mass movements. A case study in the Dolomites, Italy. Environ Geol 35(2–3):184–189.  https://doi.org/10.1007/s002540050304 CrossRefGoogle Scholar
  56. Rodolfo KS, Arguden AT (1991) Rain-Lahar Generation and Sediment-Delivery Systems At Mayon Volcano, Philippines. Sedimentation in Volcanic Settings 45(June):71–87.  https://doi.org/10.2110/pec.91.45.0071 CrossRefGoogle Scholar
  57. Sandersen F (1996) The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability. In: Proceedings the 7th International Symposium on Landslides, pp 97–114Google Scholar
  58. Sorriso-Valvo M, Agnesi V, Gullà G, Merenda L, Antronico L, Di Maggio C, Filice E, Petrucci O, Tansi C (1994) Temporal and spatial occurrence of landsliding and correlation with precipitation time series in Montaldo Uffugo (Calabria) and Imera (Sicilia) areas. Temporal occurrence and forecasting of landslides in the European Community, Final Report, II, European Community, Programme EPOCH, Contract 90(0025):825–869Google Scholar
  59. Tatizana C, Ogura AT, Cerri LE, Rocha MD (1987) Análise de correlação entre chuvas e escorregamentos-Serra do Mar, município de Cubatão. Congresso Brasileiro de Geologia de Engenharia 5:225–236Google Scholar
  60. Terlien MTJ (1996) Modelling spatial and temporal variations in rainfall-triggered landslides: the integration of hydrologic models, slope stability models and geographic information systems for the hazard zonation of rainfall-triggered landslides with examples from Manizales. International Institute for Aerospace Survey and Earth Sciences, The Netherlands. Publication, p 32Google Scholar
  61. Tuñgol NM, Regalado MTM (1996) Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992. In: Fire and mud: eruptions and lahars of Mount Pinatubo, The Philippines, (August 1991), pp 1023–1032. http://pubs.usgs.gov/pinatubo/contents.html
  62. van Westen CJ, van Asch TWJ, Soeters R (2006) “Landslide hazard and risk zonation—Why is it still so difficult? Bull Eng Geol Environ 65(2):167–184.  https://doi.org/10.1007/s10064-005-0023-0 CrossRefGoogle Scholar
  63. Wieczorek G (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Debris flows/avalanches: process, recognition, and mitigation, p 93.  https://doi.org/10.1130/reg7. Retrieved 15 Nov 2012
  64. Wieczorek GF, Morgan BA, Campbell RH (2000) Debris-flow hazards in the Blue Ridge of central Virginia. Environ Eng Geosci GeoScienceWorld 6(1):3–23.  https://doi.org/10.2113/gseegeosci.6.1.3 CrossRefGoogle Scholar
  65. Wilson C, Torikai JD, Ellen SD (1992) Development of rainfall warning thresholds for debris flows in the Honolulu District, Open File Report, pp 92–521Google Scholar
  66. Zambrano J, Mejía F, Pachón JA, Correa O (2017) Análisis de la información de los eventos de lluvia presentados los días 18 y 19 de abril de 2017 en la ciudad de Manizales. Informe. Manizales (Colombia): Universidad Nacional de Colombia Sede Manizales, Instituto de Estudios Ambientales–IDEA, Grupo De Trabajo Académico en Ingeniería Hidráulica y AmbientalGoogle Scholar
  67. Zêzere JL, Rodrigues ML (2002) Rainfall thresholds for landsliding in Lisbon Area (Portugal). In: Landslides: proceedings of the first european conference on landslides, Prague, Czech Republic, June 24-26, 2002, pp 333–338.  https://books.google.com/books?hl=es&lr=&id=psFSK_nUqqMC&oi=fnd&pg=PA333&dq=Rainfall+thresholds+for+landsliding+in+Lisbon+Area+(Portugal)&ots=bdVoSXVNXv&sig=gTOcuU7ZWZMZx4jN1m6UqBJgyoU. Retrieved 25 Nov 2014
  68. Zêzere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5(3):331–344CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Universidad Nacional de ColombiaManizalesColombia
  2. 2.Universidad Nacional de ColombiaBogotáColombia

Personalised recommendations