Ceboruco hazard map: part II—modeling volcanic phenomena and construction of the general hazard map

  • K. SieronEmail author
  • D. Ferrés
  • C. Siebe
  • R. Constantinescu
  • L. Capra
  • C. Connor
  • L. Connor
  • G. Groppelli
  • K. González Zuccolotto
Original Paper


Ceboruco volcano in the western Trans-Mexican Volcanic Belt is one of the eleven most active stratovolcanoes in Mexico. Due to its recent eruptive history including a large Plinian eruption ~ 1000 years ago, the AD 1870 eruption, and recurrent recent seismic activity, it seemed highly appropriate to construct a hazard map in order to be prepared for future eruptions and their associated hazards. Ceboruco volcano eruptions are predominantly effusive; however, it also has been characterized by a great variability of eruptive styles throughout its record of activity. In fact, some eruptions comprise a significant diversity of volcanic processes, including lava flows, tephra fallout, ballistic emission, pyroclastic flows and surges, and lahars. In this work, we present (1) an integrated and simplified hazard map and (2) more detailed scenario-based hazard maps showing the areas affected by the different expected volcanic phenomena attempting to account for this great diversity of eruptive processes. The maps represent the basis to identify the main hazard zones during a future eruption and the related impacts on population and infrastructure within the area of influence of Ceboruco (~ 700 km2), as well as for undertaking subsequent vulnerability and risk analyses. The maps provide a tool to develop measures of prevention and mitigation of volcanic hazards (preparedness of the population, establishment of evacuation routes and refuges, etc.), as well as for decision-making by authorities during territorial planning (urban expansion for example). The integrated simplified hazard map can also be a tool for dissemination purposes, in order to create awareness of associated hazards derived from a possible future activity of the volcano among the public in general. This is important because in the western sector of the Trans-Mexican Volcanic Belt (and specifically in the State of Nayarit) most volcanic edifices (with the exception of Colima volcano) are closed-vent volcanoes (sealed volcanic vent vs. open-vent systems) with long repose periods (up to ~ 16,000 years for example in the case of San Juan volcano 60 km to the W), a situation that consequently and unfortunately has led to a practically nonexistent volcanic risk perception.


Ceboruco volcano Hazard map Lava flows Ash fallout Ballistics Pyroclastic flows and surges Lahars 



This work is part of the project “Evaluación del peligro volcánico del volcán Ceboruco (Nayarit), con énfasis en su posible impacto sobre la infraestructura de la Comisión Federal de Electricidad” (Convenio CFE-800720929), funded by the Comisión Federal de Electricidad. R. Constantinescu was financed through a DGAPA-UNAM postdoctoral fellowship. Numerical modeling of pyroclastic flows took place at the Computational Geodynamics Laboratory at the Geoscience Center of UNAM-Juriquilla (Querétaro, Mexico). SPOT satellite images were obtained through the collaborative project between the Universidad Autónoma del Estado de México and the Mexican Service of Agriculture and Fishing (SIAP)-ERMEX through the “Airbus Defense & Space” license. We thank Saskia Siebe for illustrations (insets in Figs. 8, 9, 10).

Supplementary material

11069_2019_3577_MOESM1_ESM.tif (15 mb)
Supplementary material A1. Isoline maps of the probability of roof collapse due to volcanic ash load (HAZMAP software simulation) during wet and dry seasons of varying prevailing winds: Isolines of the probability of roof collapse during a Vulcanian eruption (case of intermediate scenario) are shown in the column on the left, and in the right column are shown the isolines of probability of roof collapse due to ash load during a Plinian eruption considered for the scenario of greatest hazard magnitude (TIFF 15310 kb)


  1. Alatorre-Ibargüengoitia MA, Delgado-Granados H, Farraz-Montes IA (2006) Hazard zoning for ballistic impact during volcanic explosions at Volcán de Fuego de Colima (Mexico). Geol Soc Am Spec Pap 402:209–216. Google Scholar
  2. Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J Volcanol Geotherm Res 116(1):63–78Google Scholar
  3. Alberico I, Lirer L, Petrosino P, Scandone R (2008) Volcanic hazard and risk assessment from pyroclastic flows at Ischia island (southern Italy). J Volcanol Geotherm Res 171(1):118–136Google Scholar
  4. Aldighieri B, Groppelli G, Norini G, Bertino E, Borgonovo S, Comoglio F, Pasquaré G (2007) Proposta di una metodología per la valutazione della pericolositá vulcanica del Monte Etna. Rend Soc Geol Ital 4:23–25Google Scholar
  5. Barberi F, Ghigliotti M, Macedonio G, Orellana H, Pareschi M, Rosi M (1992) Volcanic hazard assessment of Guagua Pichincha (Ecuador) based on past behaviour and numerical models. J Volcanol Geotherm Res 49(1):53–68Google Scholar
  6. Becker J, Smith R, Jonston D, Munro A (2001) Effects of the 1995–1996 Ruapehu eruptions on communities in central North Island, New Zealand, and people`s perceptions of volcanic hazards after the event. Aust J Disaster Trauma Stud 2001–1. Accessed 22 May 2001
  7. Bertino E, Damiani ML, Groppelli G, Norini G, Aldighieri B, Borgonovo S, Comoglio F, Pasquaré G (2006) Modelling lava flow to assess hazard on Mount Etna (Italy). From geological data to a preliminary hazard map. In: Voinov A, Jakeman AJ, Rizzoli AE (eds) Proceedings of the iEMSs third biennial meeting: summit on environmental modelling and software, International Environmental Modelling and Software Society, Burlington, USA.; ISBN 1-4243-0852-6978-1-4243-0852-1, pp 1-8
  8. Beverage JP, Culbertson JK (1964) Hyperconcentrations of suspended sediment. J Hydraul Div 90(6):117–128Google Scholar
  9. Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90Google Scholar
  10. Böhnel H, Pavón-Carrasco FJ, Sieron K, Mahgoub AN (2016) Palaeomagnetic dating of two recent lava flows from Ceboruco volcano, western Mexico. Geophys J Int 207(2):1203–1215Google Scholar
  11. Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawaera, New Zealand. J Geophys Res (Solid Earth) 110(B3):1–21. Google Scholar
  12. Bonadonna C, Connor L, Connor CB, Courtland LM (2014) Tephra2. Accessed 10 Dec 2018
  13. Breard EC, Lube G (2017) Inside pyroclastic density currents—uncovering the enigmatic flow structure and transport behaviour in large-scale experiments. Earth Planet Sci Lett 458:22–36Google Scholar
  14. Browne BL, Gardner JE (2004) The nature and timing of caldera collapse as indicated by accidental lithic fragments from the ~ 1000 A.D. eruption of Volcán Ceboruco, Mexico. J Volcanol Geotherm Res 130:93–105Google Scholar
  15. Caballero L, Capra L (2014) The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001 lahar scenario. Nat Hazards Earth Syst Sci 14:3345–3355Google Scholar
  16. Caballero L, Capra L, Vázquez R (2017) Evaluating the performance of FLO2D for simulating past lahar events at the most active Mexican volcanoes: Popocatépetl and Volcán de Colima. In: Riley K, Webley P, Thompson M (eds) Natural hazard uncertainty assessment: modeling and decision support. Geophys Monograph 223:179–189Google Scholar
  17. Calder ES, Wagner K, Ogburn SE (2015) Volcanic hazard maps. In: Loughlin SC, Sparks S, Brown S, Jenkins SF, Vye-Brown C (eds) Global volcanic hazards and risk. Cambridge University Press, Cambridge, pp 335–342. Google Scholar
  18. Capra L, Norini G, Groppelli G, Macías JL, Arce JL (2008) Volcanic hazard zonation of Nevado de Toluca Volcano. J Volcanol Geotherm Res 176:469–484Google Scholar
  19. Capra L, Manea VC, Manea M, Norini G (2011) The importance of digital elevation model resolution on granular flow simulations: a test case for Colima volcano using TITAN2D computational routine. Nat Hazards 59:665–680Google Scholar
  20. Capra L, Gavilanes-Ruiz JC, Bonasia R, Saucedo-Girón R, Sulpizio R (2015) Re-assessing volcanic hazard zonation of Volcán de Colima, México. Nat Hazard 76(1):41–61. Google Scholar
  21. Capra L, Coviello V, Borselli L, Márquez-Ramírez VH, Arámbula-Mendoza R (2018) Hydrological control of large hurricane-induced lahars: evidence from rainfall-runoff modeling, seismic and video monitoring. Nat Hazards Earth Syst Sci 18(3):781–794. Google Scholar
  22. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48(2–3):109–125Google Scholar
  23. CENAPRED-Centro Nacional de Prevención de Desastres (2001) Diagnóstico de peligros e identificación de riesgos de desastres en México. Atlas Nacional de Riesgos de la República Mexicana. Coordinación Nacional de Protección Civil, Secretaría de Gobernación, MéxicoGoogle Scholar
  24. Charbonnier SJ, Gertisser R (2012) Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia: towards a short-term hazard assessment tool. J Volcanol Geotherm Res 231:87–108Google Scholar
  25. Charbonnier SJ, Connor CB, Connor LJ, Sheridan MF, Hernández JO, Richardson JA (2018) Modeling the October 2005 lahars at Panabaj (Guatemala). Bull Volcanol 80(1):4. Google Scholar
  26. Chertkoff DG, Gardner JE (2004) Nature and timing of magma interactions before, during, and after the caldera-forming eruption of volcán Ceboruco, Mexico. Contrib Miner Petrol 146:715–735Google Scholar
  27. Claessens L, Heuvelink GBM, Schoorl JM, Veldkamp A (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modeling. Earth Surf Proc Land. Google Scholar
  28. Connor L, Connor CB (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. In: Mader H, Coles SC, Connor CB, Connor LJ (eds) Statistics in volcanology, IAVCEI Publications, Geol. Soc. London, ISBN 9781862392083. 5, pp 231–242Google Scholar
  29. Connor CB, Hill BE, Winfrey B, Franklin NM, Femina PCL (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards Rev 2(1):33–42Google Scholar
  30. Connor L, Connor CB, Meliksetian K, Savov I (2012) Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. J Appl Volcanol Soc Volcanoes 1:3. Google Scholar
  31. Constantinescu R (2012) Methods for quantitative hazard assessment in densely populated areas, with emphasis on pyroclastic flows case study: El Misti and Arequipa, South–Western Peru. Unpublished PhD thesis. Babes-Bolyai University, Cluj-Napoca, RomaniaGoogle Scholar
  32. Constantinescu R, Thouret JC, Irimus IA (2011) Computer modeling as tool for volcanic hazards assessment: an example of pyroclastic flow modeling at El Misti volcano, Southern Peru. Geogr Tech 14(2):1–14Google Scholar
  33. Costa A, Dell’Erba F, Di Vito MA, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71(3):259–273Google Scholar
  34. Damiani ML, Groppelli G, Norini G, Bertino E, Gigliuto A, Nucita A (2006) A lava flow simulation model for the development of volcanic hazard maps for Mount Etna (Italy). Comput Geosci 32(4):512–526Google Scholar
  35. Dartevelle S (2004) Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows. Geochem Geophys Geosyst. Google Scholar
  36. De la Cruz-Reyna S, Tilling RI (2015) Risk management of El Chichón and Tacaná volcanoes: lessons learned from past volcanic crises. In: Scolamacchia T, Macías JL (eds) Active Volcanoes of Chiapas (Mexico): El Chichón and Tacaná. Springer, Berlin, pp 155–174Google Scholar
  37. Dioguardi F, Dellino PF (2014) PYFLOW: a computer code for the calculation of the impact parameters of dilute pyroclastic density currents (DPDC) based on field data. Comput Geosci 66:200–2010. Google Scholar
  38. Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions, vol 145. Geological Society London Special Publications, London, pp 145–182Google Scholar
  39. Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke A, Voight B (2002) Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat. Geol Soc Mem 21(1):281–306. Google Scholar
  40. Dufek J (2016) The fluid mechanics of pyroclastic density currents. Ann Rev Fluid Mech 48:459–485Google Scholar
  41. Espinasa-Pereña R (2018) Evaluación del riesgo relativo de los volcanes en México. Abstract in VIII Foro Internacional: Los volcanes y su impacto, Arequipa (Perú). Accessed 7 Jan 2018
  42. Felpeto A, Araña V, Ortiz R, Astiz M, García A (2001) Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Nat Hazards 23:247–257Google Scholar
  43. Ferrés D, Delgado-Granados H, Gutiérrez E, Farraz IA, Hernández W, Pullinger CR, Escobar CD (2013) Explosive volcanic history and hazard zonation maps of Boquerón Volcano (San Salvador Volcanic Complex, El Salvador). In: Rose WI, Palma JL, Delgado-Granados H, Varley N (eds) Understanding open-vent volcanism and related hazards. Geol Soc Am Spec Pap 498:201–230Google Scholar
  44. Fitzgerald RH, Tsunematsu K, Kennedy BM, Breard ECP, Lube G, Wilson TM, Jolly AD, Pawson J, Rosenberg MD, Cronin SJ (2014) The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. J Volcanol Geotherm Res 286:248–262Google Scholar
  45. Folch A, Cavazzoni C, Costa A, Macedonio G (2008) An automatic procedure to forecast tephra fallout. J Volcanol Geotherm Res 177:767–777Google Scholar
  46. Franco-Ramos O, Stoffel M, Vázquez-Selem L, Capra L (2013) Spatio-temporal reconstruction of lahars on the southern slopes of Colima volcano, Mexico—a dendrogeomorphic approach. J Volcanol Geotherm Res 267:30–38Google Scholar
  47. Fudali RF, Melson WG (1972) Ejecta velocities, magma chamber pressure and kinetic energy associated with the 1968 eruption of Arenal volcano. Bull Volcanol 35:383–401Google Scholar
  48. García S (1875) Una visita al pueblo de S. Cristóbal., Viaje al Ceboruco. In: Edición oficial., Informe y colección de artículos relativos a los fenómenos geológicos verificados en Jalisco en el presente año y en épocas anteriores, Tomo II, tipografía de S. Banda, Guadalajara, p 354Google Scholar
  49. Gardner JE, Tait S (2000) The caldera-forming eruption of Volcán Ceboruco, Mexico. Bull Volcanol 62:20–33Google Scholar
  50. Geophysical Mass Flow Group (GMFG) (2007) Titan2D user guide. University at Buffalo, NY, USA. Accessed 25 July 2018
  51. Giordano G, Doronzo DM (2017) Sedimentation and mobility of PDCs: a reappraisal of ignimbrites’aspect ratio. Open Sci Rep 7:4444. Google Scholar
  52. Grupo para la actualización del mapa de peligros del volcán Popocatépetl (2017) Estudios geológicos y actualización del mapa de peligros del volcán Popocatépetl. Memoria técnica del mapa de peligros del volcán Popocatépetl. Monografías del Instituto de Geofísica, Universidad Nacional Autónoma de México 22, p 166. Accessed 3 Jan 2019
  53. Haynes K, Barclay J, Pidgeon N (2007) Volcanic hazard communication using maps: an evaluation of their effectiveness. Bull Volcanol 70:123–138Google Scholar
  54. Hill BE (2018) Recent publication of the international atomic energy agency technical document on “Volcanic hazard assessments for nuclear installations: methods and examples in site evaluation”. Stat Volcanol 4:1–3. Google Scholar
  55. Houghton BF, Bonadonna C, Gregg CE, Johnston DM, Cousins WJ, Cole JW, Del Carlo P (2006) Proximal tephra hazards: recent eruption studies applied to volcanic risk in the Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 155(1–2):138–149Google Scholar
  56. Hsu KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86(1):129–140Google Scholar
  57. IAEA (2016) Volcanic hazard assessments for nuclear installations: methods and examples in site evaluation. International Atomic Energy Agency, Vienna. IAEA Techdoc Series No. 1795Google Scholar
  58. Iglesias M, Bárcena M, Matute JI (1877) El Ceboruco. Anales del Ministerio de Fomento, México 1:168–196Google Scholar
  59. INEGI (2009a) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Ixtlán del Río, Nayarit. Accessed 20 Jan 2018
  60. INEGI (2009b) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Jala, Nayarit. Accessed 20 Jan 2018
  61. INEGI (2009c) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Ahuacatlán, Nayarit. Accessed 20 Jan 2018
  62. INEGI (2009d) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: San Pedro Lagunillas, Nayarit. Accessed 20 Jan 2018
  63. INEGI (2009e) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Santa María de Oro, Nayarit. Accessed 20 Jan 2018
  64. INEGI (2010) Censo de Población y Vivienda 2010. Accessed 20 Jan 2018
  65. INEGI (2017) Continuo de Elevaciones Mexicano. Accessed 20 Jan 2018
  66. Jenkins SF, Komorowski J-C, Baxter PJ, Charbonnier, SJ, Surono NC (2016) The devastating impact of the 2010 eruption of Merapi Volcano, Indonesia. In: Duarte JC, Schellart WP (eds) Plate boundaries and natural hazards, pp 259–269.
  67. Kelfoun K (2009) VolcFlow: simulation of volcanic flows. Observatoire de Physique du Globe de Clermont-Fd (OPGC), Université Blaise Pascal, Francia. Accessed: 10 Aug 2018
  68. Kelfoun K, Druitt TH (2005) Numerical modelling of the emplacement of the 7500 BP Socompa rock avalanche, Chile. J Geophys Res. Google Scholar
  69. Kereszturi G, Procter J, Cronin JS, Németh K, Bebbington M, Lindsay J (2012) LiDAR-based quantification of lava flow hazard in the City of Auckland (New Zealand). Remote Sens Environ 125:198–213. Google Scholar
  70. Kerle N, de Vries BVW, Oppenheimer C (2003) New insight into the factors leading to the 1998 flank collapse and lahar disaster at Casita volcano, Nicaragua. Bull Volcanol 65(5):331–345Google Scholar
  71. Lube G, Breard ECPS, Cronin J, Jones J (2015) Synthesizing large-scale pyroclastic flows: experimental design, scaling, and first results from PELE. J Geophys Res Solid Earth 120:1487–1502. Google Scholar
  72. Macedonio G, Costa A (2014) HAZMAP-2.4.2 User Manual. Istituto Nazionale di Geofisica e Vulcanologia, Italia. Accessed 15 June 2018
  73. Macedonio G, Costa A, Longo A (2005) A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput Geosci 31(7):837–845Google Scholar
  74. Macías JL, Capra L, Scott KM, Espíndola JM, García-Palomo A, Costa JE (2004) The 26 May 1982 breakout flows derived from failure of a volcanic dam at El Chichón, Chiapas, Mexico. Geol Soc Am Bull 116(1/2):233–246. Google Scholar
  75. Macías JL, Capra L, Arce JL, Espíndola JM, García-Palomo A, Sheridan MF (2008) Hazard map of El Chichón volcano, Chiapas, Mexico: constraints posed by eruptive history and computer simulations. J Volcanol Geotherm Res 175(4):444–458Google Scholar
  76. Magill C, Mannen K, Connor L, Bonadonna C, Connor C (2015) Simulating a multi-phase tephra fall event: inversion modelling for the 1707 Hoei eruption of Mount Fuji, Japan. Bull Volcanol 77(9):81. Google Scholar
  77. Malin MC, Sheridan MF (1982) Computer-assisted mapping of pyroclastic surges. Science 217:637–639Google Scholar
  78. Manville V, Németh K, Kano K (2009) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220(3–4):136–161Google Scholar
  79. Mastin LG (1991) The roles of magma and groundwater in the phreatic eruptions at Inyo Craters, Long Valley Caldera, California. Bull Volcanol 53:579–596Google Scholar
  80. Mastin LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions: Unite States Geological Survey, Open-File Report 01-45, p 16. Accessed 3 Jan 2019
  81. Misión ERMEX (Monitoreo Satelital) (2015) Imagen satelital SPOT6. En Portal Nacional de Información. Accessed 15 Dec 2018
  82. Mossoux S, Saey M, Bartolini S, Poppe S, Canters F, Kervyn M (2016) Q-LAVHA: a flexible GIS plugin to simulate lava flows. Comput Geosci 97:98–109. Google Scholar
  83. Murcia HF, Sheridan MF, Macías JL, Cortés GP (2010) TITAN2D simulations of pyroclastic flows at Cerro Machín Volcano, Colombia: hazard implications. J South Am Earth Sci 29:161–170Google Scholar
  84. Nelson SA (1980) Geology and petrology of Volcán Ceboruco, Nayarit, Mexico. Geol Soc Am Bull 91:2290–2431Google Scholar
  85. Nelson SA (1986) Geología del Volcán Ceboruco, con una estimación de riesgos de erupciones futuras. Rev Mex Cienc Geol UNAM 6:243–258Google Scholar
  86. Newhall CG (ed) (1997) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Univ of Washington Pr; Har/Dskt edition, p 1126Google Scholar
  87. O’Brien J (2001) FLO2D users manual, Nutrioso Arizona. Accessed 10 Aug 2018
  88. O’Brien J, Julien P, Fullerton W (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng ASCE 119:244–261Google Scholar
  89. Patra A, Bauer A, Nichita CC, Pitman EB, Sheridan MF, Bursik MI, Rupp B, Webber A, Stinton AJ, Namikawa L, Renschler C (2005) Parallel adaptive numerical simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139:1–21Google Scholar
  90. Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294Google Scholar
  91. Rivera M, Thouret JC, Marino J, Berolatti R, Fuentes J (2010) Characteristics and management of the 2006–2008 volcanic crisis at the Ubinas volcano (Peru). J Volcanol Geotherm Res 198:19–34Google Scholar
  92. Rodríguez MC, Núñez-Cornú FJ, Nava FA, Suárez-Placencia C (2013) Some insights about the activity of the Ceboruco Volcano (Nayarit, Mexico) from recent seismic low-frequency activity. Bull Volcanol 75:755–767Google Scholar
  93. Sánchez JJ, Núñez-Cornú FJ, Suárez-Plascencia C, Trejo-Gómez E (2009) Seismicity at Ceboruco Volcano, México. Seism Res Lett 80:823–830Google Scholar
  94. Sandri L, Thouret JC, Constantinescu R, Biass S, Tonini R (2014) Long-term multi-hazard assessment for El Misti volcano, Peru. Bull Volcanol 76:771Google Scholar
  95. Schilling SP (1998) GIS programs for automated mapping of lahar-inundation hazard zones. USGS Open-files, 98-638. Vancouver, Washington, USA. Accessed 10 Aug 2018
  96. Sheridan MF (1979) Emplacement of pyroclastic flows: a review. In: Chapin CE, Elston WE (eds) Ash-flow tuffs. Geol Soc Am Spec Pap 180:125–136Google Scholar
  97. Sheridan MF, Macías JL (1995) Estimation of risk probability for gravity-driven pyroclastic flows at Volcan Colima, Mexico. J Volcanol Geotherm Res 66:251–256Google Scholar
  98. Sheridan MF, Malin MC (1983) Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: vulcano, Lipari and Vesuvius. J Volcanol Geotherm Res 17:187–202Google Scholar
  99. Sheridan MF, Carrasco-Nuñez G, Hubbard BE, Siebe C, Rodríguez-Elizarrarás S (2001) Mapa de Peligros del Volcán Citlaltépetl (Pico de Orizaba). Instituto de Geología, UNAM, MéxicoGoogle Scholar
  100. Sheridan MF, Carrasco-Nuñez G, Hubbard BE, Siebe C (2004) Pyroclastic flow hazards at Volcán Citlaltépetl, México. Nat Hazards 33:209–221Google Scholar
  101. Sheridan MF, Stinton AJ, Patra AK, Bauer AC, Nichita CC, Pitman EB (2005) Evaluating TITAN2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139(1–2):89–102Google Scholar
  102. Sieron K (2009) Historia eruptiva, volúmenes emitidos y composición geoquímica e isotópica (sistemas Nd, Sr y Pb) del Volcán Ceboruco y edificios monogenéticos contiguos, Estado de Nayarit, México. PhD thesis, UNAM, Mexico, p 152Google Scholar
  103. Sieron K, Siebe C (2008) Revised stratigraphy and eruption rates of Ceboruco volcano and surrounding monogenetic vents (Nayarit, Mexico) from historical documents and new radiocarbon dates. J Volcanol Geotherm Res 176:241–264Google Scholar
  104. Sieron K, Capra L, Rodríguez-Elizarrás S (2014) Hazard assessment at San Martín volcano based on geological record, numerical modelling, and spatial analysis. Nat Hazards 70:275–297Google Scholar
  105. Sieron K, Ferres D, Siebe C, Capra L, Connor C, Connor L, Gropelli G, Constantinescu R, Böhnel H, Agustín-Flores J, González-Zuccolotto K (2019) (submitted August 03, 2018): Ceboruco hazard map. Part 1: definition of hazard scenarios based on the eruptive history. Nat HazardsGoogle Scholar
  106. Sparks RSJ, Bursik MI, Carey SN, Gilbert J, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, New York, p 574Google Scholar
  107. Spence RJS, Pomonis A, Baxter PJ, Coburn AW, White M, Dayrit M, Field Epidemiology Training Program Team (1996) Building damage caused by the mount pinatubo eruption of 15 June 1991. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of mount pinatubo, Philippines. University of Washington Press, London, pp 1055–1061Google Scholar
  108. Steinberg GS, Lorenz V (1983) External ballistics of volcanic explosions. Bull Volcanol 46(4):333–348Google Scholar
  109. Stevens NF, Manville V, Heron DW (2002) The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitized map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. J Volcanol Geotherm Res 119:89–105Google Scholar
  110. Stinton AJ, Sheridan MF, Patra A, Dalbey K, Namikawa L (2004) Integrating variable bed friction into Titan2D mass-flow model: application to the Little Tahoma Peak avalanches, Washington. Acta Vulcanol 16(1–2):153–163Google Scholar
  111. Sulpizio R, Capra L, Sarocchi D, Saucedo R, Gavilanes-Ruiz J, Varley N (2010) Predicting the block-and-ash flow inundation areas at Volcán de Colima (Colima, Mexico) based on the present day (February 2010) status. J Volcanol Geotherm Res 193(1):49–66Google Scholar
  112. Sulpizio R, Dellino P, Doronzo D, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–64Google Scholar
  113. Thompson MA, Lindsay JM, Leonard GS (2017) More than meets the eye: volcanic hazard map design and visual communication. In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) Observing the volcano world. Advances in volcanology (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth’s Interior – IAVCEI, Barcelona, Spain). Springer, ChamGoogle Scholar
  114. Thouret JC, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised hazard assessment at Merapi volcano, Central Java. J Volcanol Geotherm Res 100(1):479–502Google Scholar
  115. Wadge G, Isaacs M (1988) Mapping the volcanic hazards from Soufriere Hills volcano, Montserrat, West Indies using an image processor. J Geol Soc 145(4):541–551Google Scholar
  116. Waitt RB, Mastin LG, Miller TP (1995) Ballistics showers during Crater Peak eruptions of Mount Spurr volcano, summer 1992. In: The 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska, U.S. Geological Survey Bulletin 2139:89–106Google Scholar
  117. Walker G, Huntingdon A, Sanders A, Dinsdale J (1973) Lengths of lava flows [and discussion]. Philos Trans R Soc Lond Ser A 274:107–118Google Scholar
  118. White JT, Connor CB, Connor L, Hasenaka T (2017) Efficient inversion and uncertainty quantification of a tephra fallout model. J Geophys Res Solid Earth 122(1):281–294Google Scholar
  119. Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman J, Wilson G, Barnard ST (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth (Parts A/B/C) 45:5–23. Google Scholar
  120. Wilson G, Wilson TM, Deligne NI, Cole JW (2014) Volcanic hazard impacts to critical infrastructure: a review. J Volcanol Geotherm Res 286:148–182Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Ciencias de Ciencias de la TierraUniversidad VeracruzanaXalapaMexico
  2. 2.Departamento de Vulcanología. Instituto de GeofìsicaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico
  3. 3.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
  4. 4.School of GeosciencesUniversity of South FloridaTampaUSA
  5. 5.CNR - Istituto per la Dinamica dei Processi Ambientali - sez. di MilanoMilanoItaly

Personalised recommendations