Natural Hazards

, Volume 95, Issue 3, pp 721–737 | Cite as

Seismic and flood structural risk in Motozintla, Chiapas, Mexico

  • D. A. Novelo-CasanovaEmail author
  • A. Ponce-Pacheco
  • A. Hernández-Hernández
  • A. Juárez-Sánchez
  • M. I. López-Pérez
  • M. G. Hernández-Bello
  • O. De La Vega-Flores
Original Paper


Using the methodology developed by the Mexican National Disaster Prevention Centre (CENAPRED), we assessed the housing’s structural risk to earthquakes and floods of the town of Motozintla, Chiapas, Mexico. Structural vulnerability was estimated by characterizing the local housing’s construction and by randomly and statistically selecting the surveyed houses. We assessed risk by superposing the vulnerability geographical information system (GIS) layer over the seismic microzonation and flood scenarios GIS layers previously generated for Motozintla. Our results indicate that in general, this community has high structural vulnerability and risk levels to the two analyzed natural hazards. Very high seismic structural vulnerability is concentrated mainly along the northeastern and western sides of the local Xelaju Grande River. Another major finding is that in the worst flood case scenario (precipitation of 528 mm/h with flood depth > 125 cm) more than 44% of the houses in Motozintla will be severely damaged. Risk increases due to the prevalent precarious housing conditions. The results of this research will allow local authorities to strength their civil protection plans.


Risk assessment Natural hazards Structural vulnerability Earthquakes Floods Motozintla, Chiapas Mexico 



We thank the government of Motozintla for its support during our field works and for kindly providing their local data. The Program to Support Research Projects and Technology Innovation of the National Autonomous University of Mexico funded this research (UNAM; PAPIIT Projects Nos. IN118614 and IN111217).


  1. Antonioni G, Spandoni G, Cozzani V (2007) A methodology for the quantitative risk assessment of major accidents triggered by seismic events. Sci Direct. 147:48–59Google Scholar
  2. Bariola J, Sozen M (1990) Seismic tests of adobe walls. Earthq Spectra 6:37–56CrossRefGoogle Scholar
  3. Blondet M, Vargas J, Torrealva D, Tarque N, Velázquez J (2006) Seismic reinforcement of adobe houses using external polymer mesh. In: Proceeding of the First European conference on earthquake engineering and seismology, SwitzerlandGoogle Scholar
  4. Caballero GA, Macías JL, García-Palomo A, Saucedo GR, Borselli L, Sarocchi D, Sánchez-Nuñez JM (2006) The September 8-9 rain-triggered flows at Motozintla, Chiapas, México. Nat Hazards 39:103–126CrossRefGoogle Scholar
  5. Calvi GM, Pinho R, Magenes G, Bommer JJ, Restrepo-Vélez LF, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43:75–104Google Scholar
  6. Cantarero-Prados FJ (2013) Zonificación de la amenaza por inundaciones. Atlas de Factores de Riesgos de la Cuenca de Motozintla, Chiapas [Atlas of Risk Factors of the Watershed of Motozintla, Chiapas, in Spanish]. Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico, pp 146–149Google Scholar
  7. Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84:242–261CrossRefGoogle Scholar
  8. Eslava-Morales H, Jiménez-Espinosa M, Salas-Salinas MA, García-Jiménez F, Vázquez-Conde MT (2004) Criterios de Evaluación de la Vulnerabilidad Física [Criteria for Evaluation of Physical Vulnerability, In Spanish). In: Guía Básica para la Elaboración de Atlas Estatales y Municipales de Peligro y Riesgos, pp 206–220Google Scholar
  9. Gao X, Ji J (2014) Analysis of the seismic vulnerability and the structural characteristics of houses in Chinese rural areas. Nat. Hazards 70:1099–1114CrossRefGoogle Scholar
  10. Guzman-Speziale M, Meneses-Rocha J (2000) The North America-Caribbean plate boundary west of the Motagua-Polochic fault system: a fault jog in Southeastern Mexico. J South Am Earth Sci 13:459–468CrossRefGoogle Scholar
  11. Instituto Nacional de Estadística, Geografía e Informática (National Institute of Statistics and Geography): Censo de Población y Vivienda [Census of Population and Housing 2010] [Internet]. C2010. Accessed 9 May 2012)
  12. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190Google Scholar
  13. Jiang W, Deng L, Chen L, Wu J, Li J (2009) Risk assessment and validation of flood disaster based on fuzzy mathematics. Prog Nat Sci 19:1419–1425CrossRefGoogle Scholar
  14. Kenny C (2009) Why do people die in earthquakes? The costs, benefits and institutions of disaster risk reduction in developing countries. World Bank Policy Research working paper no. 4823.
  15. Marhavilas PK, Koulouriotis D, Germeni V (2011) Risk analysis and assessment methodologies in the work sites: on a review, classification and comparative study of the period 2000–2009. J Loss Prev Proc Ind. 24:477–523CrossRefGoogle Scholar
  16. McMaster R (2013) In memoriam: George F. Jenks (1916–1996). Cartogr Geogr Inf Sci 24:56–59Google Scholar
  17. Mendenhall W, Beaver RJ, Beaver BM (2005) Introduction to probability and statistics brooks. Duxbury Press, ScituateGoogle Scholar
  18. Mexican National Seismological Service (SSN) Web Site, Mexico DF (2016).
  19. Moreno-Perales G, Novelo-Casanova DA, Lermo-Samaniego J, Larrazábal-Galaviz CK, Monroy-Salazar K (2013) Microzonificación Sísmica de la Cabecera Municipal de Motozintla, Chiapas. Atlas de Factores de Riesgos de la Cuenca de Motozintla, Chiapas [Atlas of Risk Factors of the Watershed of Motozintla, Chiapas, in Spanish]. Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico, pp 88–91Google Scholar
  20. Moroni MO, Astroza M, Acevedo C (2004) Performance and seismic vulnerability of masonry housing types used in Chile. J Perform Constr Facil 18:173–179CrossRefGoogle Scholar
  21. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep RTRI 30:25–33Google Scholar
  22. Novelo-Casanova DA, Rodriguez-Vangort F (2015) Flood risk assessment. Case study: Motozintla de Mendoza, Chiapas Mexico. Geomat Nat Hazards Risk. Google Scholar
  23. Penning-Rowsell EC, Fordham M, Correia FN, Gardiner J, Green C, Hubert G, Ketteridge A-M, Klaus J, Parker D, Peerbolte B, Pflügner W, Reitano B, Rocha J, Sanchez-Arcilla A, Saraiva MdG, Schmidtke R, Torterotot J-P, van der Veen A, Wierstra E, Wind H (1994) Flood hazard assessment, modelling and management: results from the EU-ROflood project. In: Penning-Rowsell EC, Fordham M (eds) Floods across Europe: flood hazard assessment, modelling and management. Middlesex University Press, London, pp 37–72Google Scholar
  24. Plafker G (1976) Tectonic aspects of the Guatemala earthquake of 4 February 1976. Science 193:1201–1208CrossRefGoogle Scholar
  25. Rashed T, Weeks J (2003) Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int J Geo-Inf 17:47–576Google Scholar
  26. Reyes-Salinas C, Flores-Corona L, Pacheco-Martínez MA, López-Bátiz O, Valerio-Zárate LA, Zepeda-Ramos O (2004) Evaluación Simplificada de la Vulnerabilidad de la Vivienda Unifamiliar ante Sismo y Viento [Simplified Evaluation of the Vulnerability of Single Family Housing in the case of Earthquakes and Wind, in Spanish]. In: Guía Básica para la Elaboración de Atlas Estatales y Municipales de Peligro y Riesgos, pp 311–338Google Scholar
  27. San Bartolomé A, Quiun D, Cabrera D, Huaynate W, Romero I, Pereyra J. 2013. Experimental study on adobe walls with long term water exposure due to floods. In: Anderson D, Brzev (eds) Proceedings of the 12th Canadian Masonry Symposium, Vancouver, British Columbia, CanadaGoogle Scholar
  28. Schneiderbauer S, Ehrlich D (2006) Social levels and hazard (in) dependence in determining vulnerability. In: Birkmann J (ed) Measuring vulnerability to natural hazards—towards disaster resilient societies. United University Press, Tokyo, pp 78–102Google Scholar
  29. Smith DI (1994) Flood damage estimation—a review of urban stage- damage curves and loss functions. Water SA. 20:231–238Google Scholar
  30. Sutch P (1981) Estimated intensities and probable tectonic sources of historic (pre-1898) Honduran earthquakes. Bull Seismol Soc Am 71:865–881Google Scholar
  31. Thieken AH, Müller M, Kreibich H, Merz B (2005) Flood damage and influencing factors: new insights from the August 2002 flood in Germany. Water Resour Res. Google Scholar
  32. United Nations Economic Commission for Latin America and the Caribbean (ECLAC) (2006) Web Site, Mexico DF.
  33. United Nations International Strategy for Disaster Reduction: Terminology on disaster reduction (2009).
  34. Vidal ZR (2007) Carta NA IV11: Precipitación máxima en 24 horas en milímetros [Cartographic Letter NA IV11: Maximum Precipitation in 24 hours in millimeters]. Atlas Nacional de Mexico [National Atlas of Mexico]: Instituto de Geografía, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  35. Vidal ZR, Gómez RG (2007) Carta NA IV5: Precipitación total anual [Cartographic Letter NA IV5: Total annual precipitation]. Atlas Nacional de Mexico [National Atlas of Mexico]: Instituto de Geografía, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  36. White RA (1985) The Guatemala earthquake of 1816 on the Chixoy-Polochic fault. Bull Seismol Soc Am 75:455–473Google Scholar
  37. White WR (2000) Water in rivers: flooding, a contribution to the world water vision. IAHR, MadridGoogle Scholar
  38. White RA, Harlow DH (1993) Destructive upper-crustal earthquakes of Central America since 1900. Bull Seismol Soc Am 83:1115–1142Google Scholar
  39. Yates DS, Moore DS, Starnes DS (2008) The practice of statistics. W.H. Freeman and Company, New YorkGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • D. A. Novelo-Casanova
    • 1
    Email author
  • A. Ponce-Pacheco
    • 2
  • A. Hernández-Hernández
    • 3
  • A. Juárez-Sánchez
    • 4
  • M. I. López-Pérez
    • 5
  • M. G. Hernández-Bello
    • 3
  • O. De La Vega-Flores
    • 5
  1. 1.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Posgrado en Ciencias de la TierraUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  3. 3.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  4. 4.Facultad de Filosofía y LetrasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  5. 5.Facultad de Ciencias Políticas y SocialesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations