Natural Hazards

, Volume 94, Issue 3, pp 1367–1389 | Cite as

Modeling snow depth extremes in Austria

  • Harald Schellander
  • Tobias Hell
Original Paper


Maps of extreme snow depths are important for structural design and general risk assessment in mountainous countries like Austria. The smooth modeling approach is commonly accepted to provide more accurate margins than max-stable processes. In contrast, max-stable models allow for risk estimation due to explicitly available spatial extremal dependencies, in particular when anisotropy is accounted for. However, the difference in return levels is unclear, when modeled smoothly or with max-stable processes. The objective of this study is twofold: first, to investigate that question and to provide snow depth return level maps for Austria; and second, to investigate spatial dependencies of extreme snow depths in Austria in detail and to find a suitable model for risk estimation. Therefore, a model selection procedure was used to define a marginal model for the GEV parameters. This model was fitted to 210 snow depth series comprising a length of 42 years using the smooth model approach and different max-stable models allowing for anisotropy. Despite relatively clear advantages for the Extremal-t max-stable process based on two scores compared to the smooth model as well as the Brown–Resnick, Geometric Gaussian and Schlather processes, the difference in 100-year snow depth return levels is too small, to decide which approach works better. Spatial dependencies of snow depth extremes between the regions north and south of the Austrian Alps are almost independent. Dependencies are stronger in the south for small distances between station pairs up to 120 km and become stronger in the north for larger distances. For risk modeling the Austrian Alps could be separated into regions north and south of the Alps. Fitting an anisotropic Extremal-t max-stable process to either side of the Alps can improve modeling of joint exceedance probabilities compared to one single model for the whole of Austria, especially for small station distances.


Extreme values Max-stable process Smooth model Snow depth Spatial modeling Risk estimate Spatial dependence 



The authors are grateful to ZAMG for data acquisition and supply. The computational results presented have been achieved (in part) using the HPC infrastructure LEO of the University of Innsbruck.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723 ISSN 0018-9286CrossRefGoogle Scholar
  2. Bel L, Bacro J, Lantuejoul C (2008) Assessing extremal dependence of environmental spatial fields. Environmetrics 19:163–182CrossRefGoogle Scholar
  3. Blanchet J, Creutin J-D (2017) Co-occurrence of extreme daily rainfall in the French Mediterranean region. Water Resour Res 53:9330–9349 ISSN 00431397CrossRefGoogle Scholar
  4. Blanchet J, Davison A (2011) Spatial modeling of extreme snow depth. Ann Appl Stat 5:1699–1725CrossRefGoogle Scholar
  5. Blanchet J, Lehning M (2010) Mapping snow depth return levels: smooth spatial modeling versus station interpolation. Hydrol Earth Syst Sci 14:2527–2544CrossRefGoogle Scholar
  6. Blanchet J, Marty C, Lehning M (2009) Extreme value statistics of snowfall in the Swiss Alpine region. Water Resour Res. CrossRefGoogle Scholar
  7. Bocchiola D, Medagliani M, Rosso R (2006) Regional snow depth frequency curves for avalanche hazard mapping in central Italian Alps. Cold Reg Sci Technol 46:204–221 ISSN 0165-232XCrossRefGoogle Scholar
  8. Bocchiola D, Bianchi Janetti E, Gorni E, Marty C, Sovilla B (2008) Regional evaluation of three day snow depth for avalanche hazard mapping in Switzerland. Nat Hazards Earth Syst Sci 8:685–705CrossRefGoogle Scholar
  9. Brown BM, Resnick SI (1977) Extreme values of independent stochastic processes. J Appl Probab 14:732–739 ISSN 00219002CrossRefGoogle Scholar
  10. Castruccio S, Huser R, Genton MG (2016) High-order composite likelihood inference for max-stable distributions and processes. J Comput Graph Stat 25:1212–1229 ISSN:1061-8600CrossRefGoogle Scholar
  11. Coles S (2001) An introduction to statistical modeling of extreme values. Springer series in statistics. Springer, London. ISBN:1-85233-459-2Google Scholar
  12. Cooley D, Naveau P, Poncet P (2006) Variograms for spatial max-stable random fields. In: Bertail P, Soulier P, Doukhan P (eds) Dependence in probability and statistics, volume 187 of Lecture notes in statistics. Springer, New York, pp 373–390. ISBN:978-0-387-31741-0Google Scholar
  13. Davison AC, Padoan SA, Ribatet M (2012) Statistical modeling of spatial extremes. Stat Sci 27:161–186CrossRefGoogle Scholar
  14. de Haan L (1984) A spectral representation for max-stable processes. Ann Probab 12:1194–1204 ISSN 0091-1798CrossRefGoogle Scholar
  15. Dombry C, Genton MG, Huser R, Ribatet M (2017) Full likelihood inference for max-stable data. arXiv:1703.08665 [stat]
  16. EN 1991-1-3 (2003) Eurocode 1: actions on structures—part 1–3: general actions—snow loads. Technical report, European Committee for StandardizationGoogle Scholar
  17. Gaume J, Eckert N, Chambon G, Naaim M, Bel L (2013) Mapping extreme snowfalls in the French Alps using max-stable processes. Water Resour Res 49:1079–1098 ISSN 00431397CrossRefGoogle Scholar
  18. Genton MG, Ma Y, Sang H, Yanyuan M, Huiyan S (2011) On the likelihood function of Gaussian max-stable processes. Biometrika 98:481–488 ISSN:0006-3444CrossRefGoogle Scholar
  19. Hiebl J, Reisenhofer S, Auer I, Böhm R, Schöner W (2011) Multi-methodical realisation of Austrian climate maps for 1971–2000. Adv Sci Res 6:19–26 ISSN:1992-0636CrossRefGoogle Scholar
  20. Hong HP, Ye W (2014) Analysis of extreme ground snow loads for Canada using snow depth records. Nat Hazards 73:355–371 ISSN:0921-030X, 1573-0840CrossRefGoogle Scholar
  21. Huser R, Davison AC (2013) Composite likelihood estimation for the Brown–Resnick process. Biometrika 100:511–518 ISSN 0006-3444CrossRefGoogle Scholar
  22. Kabluchko Z, Schlather M, de Haan L (2009) Stationary max-stable fields associated to negative definite functions. Ann Probab 37:2042–2065CrossRefGoogle Scholar
  23. Leadbetter MR, Lindgren G, Rootzèn H (1983) Extremes and related properties of random sequences and processes. Springer, New York ISBN:9781461254492CrossRefGoogle Scholar
  24. Lipa W, Jurkovic A (2012) Arbeitsanweisung OFFLINE Klimadatenprüfung- Dokumentation für internen Gebrauch. ZAMGGoogle Scholar
  25. Marty C, Blanchet J (2012) Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Clim Change 111:705–721 ISSN 01650009CrossRefGoogle Scholar
  26. Mo HM, Dai LY, Fan F, Che T, Hong HP (2016) Extreme snow hazard and ground snow load for China. Nat Hazards 84:2095–2120 ISSN:0921-030X, 1573-0840CrossRefGoogle Scholar
  27. Naveau P, Nogaj M, Ammann C, Yiou P, Cooley D, Jomelli V (2005) Statistical methods for the analysis of climate extremes. C R Geosci 337:1013–1022 ISSN 1631-0713CrossRefGoogle Scholar
  28. Nicolet G, Eckert N, Morin S, Blanchet J (2015) Inferring spatio-temporal patterns in extreme snowfall in the French Alps using max-stable processes. Procedia Environ Sci 26:24–31 ISSN 1878-0296CrossRefGoogle Scholar
  29. Nicolet G, Eckert N, Morin S, Blanchet J (2016) Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change. J Geophys Res Atmos 121:8297–8310 ISSN:2169-8996CrossRefGoogle Scholar
  30. Olefs M, Schöner W, Suklitsch M, Wittmann C, Niedermoser B, Neururer A, Wurzer A (2013) SNOWGRID—a new operational snow cover model in Austria. In: International Snow Science Workshop Grenoble—Chamonix Mont-Blanc—07–11 October 2013, pp 38–45Google Scholar
  31. ÖNORM B 1991-1-3:2006 (2006) Einwirkungen auf Tragwerke Teil 1–3: Allgemeine Einwirkungen - Schneelasten. Nationale Festlegungen zur ÖNORM EN 1991-1-3, nationale Erläuterungen und nationale Ergänzungen. Technical report, Österreichisches NormungsinstitutGoogle Scholar
  32. Opitz T (2013) Extremal processes: elliptical domain of attraction and a spectral representation. J Multivar Anal 122:409–413 ISSN 0047-259XCrossRefGoogle Scholar
  33. Padoan SA, Ribatet M, Sisson SA (2010) Likelihood-based inference for max-stable processes. J Am Stat As 105:263–277 ISSN 0162-1459CrossRefGoogle Scholar
  34. Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme wind speeds. Meteorological 6:119–132 ISSN 1469-8080CrossRefGoogle Scholar
  35. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN:3-900051-07-0Google Scholar
  36. Reich BJ, Shaby BA (2012) A hierarchical max-stable spatial model for extreme precipitation. Ann Appl Stat 6:1430–1451CrossRefGoogle Scholar
  37. Ribatet M (2013) Spatial extremes: max-stable processes at work. J Soc Fr Stat 154:156–177 ISSN 2102-6238Google Scholar
  38. Rudolf-Miklau F, Sauermoser S (eds) (2011) Handbuch Technischer Lawinenschutz. Ernst & Sohn, A Wiley Company, HobokenGoogle Scholar
  39. Schlather M (2002) Models for stationary max-stable random fields. Extremes 5:33–44 ISSN 1572-915XCrossRefGoogle Scholar
  40. Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90:139–156CrossRefGoogle Scholar
  41. Sebille Q, Fougères A-L, Mercadier C (2017) Modeling extreme rainfall: a comparative study of spatial extreme value models. Spat Stat 21:187–208 ISSN 2211-6753CrossRefGoogle Scholar
  42. Sinclair CD, Spurr BD, Ahmad MI (1990) Modified Anderson–Darling test. Commun Stat Theory Methods 19:3677–3686 ISSN 0361-0926CrossRefGoogle Scholar
  43. Smith RL (1990) Max-stable processes and spatial extreme. UnpublishedGoogle Scholar
  44. Takeuchi K (1976) Distribution of informational statistics and a criterion of model fitting. Suri-Kagaku (Math Sci) 153:12–18Google Scholar
  45. Xu G, Genton M (2016) Tukey max-stable processes for spatial extremes. Spat Stat 18(Part B):431–443 ISSN:2211-6753CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Zentralanstalt für Meteorologie und GeodynamikInnsbruckAustria
  2. 2.Department of Atmospheric and Cryospheric Sciences (ACINN)University of InnsbruckInnsbruckAustria
  3. 3.Department of MathematicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations