Advertisement

Natural Hazards

, Volume 88, Issue 1, pp 285–313 | Cite as

New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites

  • George R. Priest
  • Robert C. Witter
  • Yinglong J. Zhang
  • Chris Goldfinger
  • Kelin Wang
  • Jonathan C. Allan
Original Paper

Abstract

Forecasting earthquake and tsunami hazards along the southern Cascadia subduction zone is complicated by uncertainties in the amount of megathrust fault slip during past ruptures. Here, we estimate slip on hypothetical ruptures of the southern part of the megathrust through comparisons of late Holocene Cascadia earthquake histories derived from tsunami deposits on land and marine turbidites offshore. Bradley Lake in southern Oregon lies ~600 m landward of the shoreline and contains deposits from 12 tsunamis in the past 4600 years. Tsunami simulations that overtop the 6-m-high lake outlet, generated by ruptures with most slip south of Cape Blanco, require release of at least as much strain on the megathrust as would accumulate in 430–640 years (>15–22 m). Such high slip is inconsistent with global seismic data for a rupture ~300-km long and slip deficits over the past ~4700 years on the southern Cascadia subduction zone. Assuming slip deficits accumulated during the time intervals between marine turbidites, up to 8 of 12 tsunami inundations at the lake are predicted from a marine core site 170 km north of the lake (at Hydrate Ridge) compared to 4 of 12 when using a core site ~80 km south (at Rogue Apron). Longer time intervals between turbidites at Hydrate Ridge imply larger slip deficits compared to Rogue Apron. The different inundations predicted by the two records suggest that Hydrate Ridge records subduction ruptures that extend past both Rogue Apron and Bradley Lake. We also show how turbidite-based estimates of CSZ rupture length relate to tsunami source scenarios for probabilistic tsunami hazard assessments consistent with lake inundations over the last ~4600 years.

Keywords

Tsunami Cascadia subduction zone Bradley Lake Earthquake Paleoseismic data Turbidites Fault ruptures 

Abbreviations

DOGAMI

Oregon Department of Geology and Mineral Industries

CSZ

Cascadia subduction zone

MHHW

Mean higher high water

NOAA

National oceanic and atmospheric administration

Notes

Acknowledgements

This investigation was supported by the Oregon Department of Geology and Mineral Industries. Computational facilities at the College of William and Mary which were provided with the assistance of the National Science Foundation, the Virginia Port Authority, and Virginia’s Commonwealth Technology Research Fund, and also using the Extreme Science and Engineering Discovery Environment (XSEDE; Grant #TG-CCR120029), which is supported by National Science Foundation grant number OCI-1053575.

References

  1. Adams J (1990) Paleoseismicity of the Cascadia subduction zone—evidence from turbidites off the Oregon–Washington margin. Tectonics 9:569–583CrossRefGoogle Scholar
  2. Atwater BF, Hemphill-Haley E (1997) Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington. US Geol Surv Prof Paper 1576Google Scholar
  3. Atwater BF, Carson B, Griggs GB, Johnson HP, Salmi MS (2014) Rethinking turbidite paleoseismology along the Cascadia subduction zone. Geology. doi: 10.1130/G35902.1 Google Scholar
  4. Bernstein EH (1925) Topography of the Oregon coast south of Coquille River, T-Sheet 4216, 1:20,000 scale, US Natl Geod Surv, Silver SpringGoogle Scholar
  5. Black B (2014) Stratigraphic correlation of seismoturbidites and the integration of sediment cores with 3.5 khz chirp subbottom data in southern Cascadia. Masters thesis, Oregon State UniversityGoogle Scholar
  6. Blaser L, Krüger F, Ohmberger M, Scherbarum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100(6):2914–2926CrossRefGoogle Scholar
  7. Burgette RJ, Weldon RJ II, Schmidt DA (2009) Inter-seismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J Geophys Res 114(B01408):1–24Google Scholar
  8. Dura T, Engelhart SE, Vacchi M, Horton BP, Kopp RE, Peltier WR, Bradley S (2016) The role of Holocene relative sea-level change in preserving records of subduction zone earthquakes. Curr Cliamate Change Rep 2(3):86–100CrossRefGoogle Scholar
  9. Engelhart SE, Vacchi M, Horton BP, Nelson AR, Kopp RE (2015) A sea-level database for the Pacific coast of central North America. Quat Sci Rev 113:78–92CrossRefGoogle Scholar
  10. Frankel AD (2011) Summary of November 2010 meeting to evaluate turbidite data for constraining the recurrence parameters of great Cascadia earthquakes for the update of the national seismic hazard maps. U.S. Geol Surv Open-File Report 2011–1310, p 13. http://pubs.usgs.gov/of/2011/1310/
  11. Geist EL (1998) Local tsunamis and earthquake source parameters. In: Dmowska R, Saltzman B (ed) Tsunamigenic earthquakes and their consequences, Adv Geophys 39, pp 2-1–2-16Google Scholar
  12. Goldfinger C, Nelson CH, Morey AE, Johnson JE, Gutierrez-Pastor J, Eriksson AT, Karabanov E, Patton J, Gracia E, Enkin R, Dallimore A, Dunhill G, Vallier T (2012) Turbidite event history: Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone, USGS Professional Paper 1661-F, Reston, VA, U.S. Geological Survey, p 178, 64 figuresGoogle Scholar
  13. Goldfinger C, Ikeda Y, Yeats RS, Ren J (2013a) Superquakes and supercycles. Seismol Res Lett. doi: 10.1785/0220110135 Google Scholar
  14. Goldfinger C, Morey AE, Black B, Beeson J, Nelson CH, Patton J (2013b) Spatially limited mud turbidites on the Cascadia margin: segmented earthquake ruptures? Nat Haz Earth Syst Sci 13:1–38. doi: 10.5194/nhess-13-1-2013 CrossRefGoogle Scholar
  15. Goldfinger C, Galer S, Beeson J, Hamilton T, Black B, Romsos C, Nelson H, Morey A (2016a) The importance of site selection, sediment supply, and hydrodynamics: a case study of submarine paleoseismology on the northern Cascadia margin, Washington USA. Marine Geol. doi: 10.1016/j.margeo.2016.06.008 Google Scholar
  16. Goldfinger C, Kane T, Beeson J, Romsos C (2016b) Structural definition of the Cascadia locked zone. Oregon State University, Corvallis, OR, USA, Report ATSML2016-1, p 132Google Scholar
  17. Hughen KA et al (2004) Marine04 marine radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1059–1086CrossRefGoogle Scholar
  18. Kelsey HM, Witter RC, Hemphill-Haley E (2002) Plate-boundary earthquakes and tsunamis of the past 5,500 yr, Sixes River estuary, southern Oregon. Geol Soc Am Bull 114:298–314. doi: 10.1130/0016-7606(2002)114<0298:PBEATO>2.0.CO;2 CrossRefGoogle Scholar
  19. Kelsey HM, Nelson AR, Hemphill-Haley E, Witter RC (2005) Tsunami history of an Oregon coastal lake reveals a 4,600 yr record of great earthquakes on the Cascadia subduction zone. Geol Soc Am Bull 117(7/8):1009–1032CrossRefGoogle Scholar
  20. Komar P (1997) The Pacific Northwest coast: living with the shores of Oregon and Washington. Duke University Press, Durham, NC, 195 ppGoogle Scholar
  21. Komar PD, Allan JC, Ruggiero P (2011) Sea level variations along the U.S. Pacific Northwest coast: Tectonic and climate controls. J Coastal Res 27(5):808–823CrossRefGoogle Scholar
  22. McCaffrey R, King RW, Payne SJ, Lancaster M (2013) Active tectonics of northwestern US inferred from GPS-derived surface velocities. J Geophys Res Solid Earth 118(2):709–723CrossRefGoogle Scholar
  23. Milker Y, Nelson AR, Horton BP, Engelhart SE, Bradley LA, Witter RC (2016) Differences in coastal subsidence in southern Oregon (USA) during at least six prehistoric megathrust earthquakes. Quat Sci Rev 142:143–163CrossRefGoogle Scholar
  24. Mofjeld HO, Foreman MGG, Ruffman A (1997) West Coast tides during Cascadia subduction zone tsunamis. Geophys Res Lett 24(17):2215–2218CrossRefGoogle Scholar
  25. Nelson AR, Jennings AE, Kashima K (1996) An earthquake history derived from stratigraphic and microfossil evidence of relative sea-level change at Coos Bay, southern coastal Oregon. Geol Soc Am Bull 108:141–154. doi: 10.1130/0016-7606(1996)108<0141:AEHDFS>2.3.CO;2 CrossRefGoogle Scholar
  26. Nelson AR, Ota Y, Umitsu M, Kashima K, Matshushima Y (1998) Seismic or hydrodynamic control of rapid late-Holocene sea-level rise in southern coastal Oregon, USA? Holocene 8:287–299. doi: 10.1191/095968398668600476 CrossRefGoogle Scholar
  27. Nelson AR, Kelsey HM, Witter RC (2006) Great earthquakes of variable magnitude at the Cascadia subduction zone. Quat Res 65:354–365CrossRefGoogle Scholar
  28. Nelson AR, Sawai Y, Jennings AE, Bradley LA, Gerson L, Sherrod BL, Sabean J, Horton BP (2008) Great-earthquake paleogeodesy and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast, USA. Quat Sci Rev 27(7–8):747–768. doi: 10.1016/j.quascirev.2008.01.001 CrossRefGoogle Scholar
  29. Nicolsky DJ, Suleimani EN, Hansen RA (2013) Note on the 1964 Alaska tsunami generation by horizontal displacements of ocean bottom. Numerical modeling of the runup in Chenega Cove, Alaska. Pure and Appl Geophys 170(9):1433–1447CrossRefGoogle Scholar
  30. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154Google Scholar
  31. Priest GR, Goldfinger C, Wang K, Witter RC, Zhang Y, Baptista AM (2010) Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Nat Hazards. doi: 10.1007/s11069-009-9453-5 Google Scholar
  32. Priest GR, Zhang Y, Witter RC, Wang K, Goldfinger C, Stimely L (2014) Tsunami impact to Washington and northern Oregon from segment ruptures on the southern Cascadia subduction zone. Nat Hazards. doi: 10.1007/s11069-014-1041-7 Google Scholar
  33. Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian, S, Harmsen SC, Boyd OS, Field N, Chen R, Rukstales KS, Luco N, Wheeler RL, Williams RA, Olsen AH (2014) Documentation for the 2014 update of the United States national seismic hazard maps. U.S. Geol Surv Open-File Report 2014–1091, p 243. doi: 10.3133/ofr20141091
  34. Reimer PJ et al (2004) IntCal04 terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1029–1058CrossRefGoogle Scholar
  35. Rodríguez-Pérez Q, Ottemöller L (2013) Finite-fault scaling relations in Mexico. Geophys J Int 193:1570–1588CrossRefGoogle Scholar
  36. Rong Y, Jackson DD, Magistrale H, Goldfinger C (2014) Magnitude limits of subduction zone earthqukes. Bull Seismol Soc Am. doi: 10.1785/0120130287 Google Scholar
  37. Satake K, Wang K, Atwater BF (2003) Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J Geophys Res 108(B11):2535. doi: 10.1029/2003JB002521 CrossRefGoogle Scholar
  38. Scholz CH (1982) Scaling laws for large earthquakes: consequences for physical models. Bull Seismol Soc Amer 72(1):1–14Google Scholar
  39. Scholz CH (2014) Holocene earthquake history of Cascadia: a quantitative test. Bull Seismol Soc Am 104(4):2120–2124CrossRefGoogle Scholar
  40. Scholz CH, Campos J (2012) The seismic coupling of subduction zones revisited. J Geophys Res. doi: 10.1029/2011JB009003 Google Scholar
  41. Shi B, Brune JN (2005) Characteristics of near-fault ground motions by dynamic thrust faulting: two-dimensional lattice particle approaches. Bull Seismol Soc Amer 95(6):2525–2533CrossRefGoogle Scholar
  42. Shimazaki K, Nakata T (1980) Time-predictable recurrence model of large earthquakes. Geophs Res Lett 7:279–282CrossRefGoogle Scholar
  43. Sieh K et al (2008) Earthquake supercyles inferred from sea-level changes recorded in the corals of West Sumatra. Science 322:1674–1678CrossRefGoogle Scholar
  44. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration programme. Radiocarbon 35(1):215–231CrossRefGoogle Scholar
  45. Titov VV, Synolakis CE (1997) Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophys Res Lett 24(11):1315–1318CrossRefGoogle Scholar
  46. Tsuji T, Kawamura K, Kanamatsu T, Kasaya T, Fujikura K, Ito Y, Tsuru T, Kinoshita M (2013) Extension of continental crust by anelastic deformation during the 2011 Tohoku-oki earthquake: the role of extensional faulting in the generation of a great tsunami. Earth Planet Sci Lett 364:44–58CrossRefGoogle Scholar
  47. Wang K, He J (2008) Effects of frictional behaviour and geometry of subduction fault on coseismic seafloor deformation. Bull Seismol Soc Am 98(2):571–579CrossRefGoogle Scholar
  48. Witter RC, Kelsey HM, Hemphill-Haley E (2003) Great Cascadia earthquakes and tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon. Geol Soc Am Bull 115:1289–1306CrossRefGoogle Scholar
  49. Witter RC, Zhang YJ, Wang K, Priest GR, Goldfinger C, Stimely L, English JT, Ferro PA (2011) Simulating tsunami inundation at Bandon, Coos County, Oregon, using hypothetical Cascadia and Alaska earthquake scenarios. Oreg Dep Geol Min Indus Special Paper 43Google Scholar
  50. Witter RC, Zhang Y, Wang K, Goldfinger C, Priest GR, Allan JC (2012) Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake and earthquake-triggered marine turbidites. J Geophys Res. doi: 10.1029/2012JB009404 Google Scholar
  51. Witter RC, Zhang YJ, Wang K, Priest GR, Goldfinger C, Stimely L, English JT, Ferro PA (2013) Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere 9:1783–1803. doi: 10.1130/GES00899.1 CrossRefGoogle Scholar
  52. Zhang Y (2012) SELFE. In: Proceedings and results of the 2011 NTHMP model benchmarking workshop, National Tsunami Hazard Mitigation Program, pp 303–336. http://nws.weather.gov/nthmp/documents/nthmpWorkshopProcMerged.pdf. Accessed 18 Jan 2015
  53. Zhang Y, Baptista AM (2008) An efficient and robust tsunami model on unstructured grids Part I: inundation benchmarks. Pure appl Geophys 165(11–12):2229–2248. doi: 10.1007/s00024-008-0424-7 CrossRefGoogle Scholar
  54. Zhang Y, Witter RW, Priest GP (2011) Tsunami–tide interaction in 1964 Prince William Sound tsunami. Ocean Model 40:246–259CrossRefGoogle Scholar
  55. Zhang Y, Priest GR, Allan J, Stimely L (2016a) Benchmarking an unstructured-grid model for tsunami current modeling. Pure Appl Geophys. doi: 10.1007/s00024-016-1328-6 Google Scholar
  56. Zhang YJ, Ye F, Stanev EV, Grashorn S (2016b) Seamless cross-scale modelling with SCHISM. Ocean Model 102:64–81CrossRefGoogle Scholar
  57. Zilkoski DB., Richards JH, Young GM (1992) Results of the general adjustment of the North American Vertical Datum of 1988. American Congress on Surveying and Mapping, Surveying and Land Information Systems 52(3):133–149, http://www.ngs.noaa.gov/PUBS_LIB/NAVD88/navd88report.htm. Accessed 25 March 2013

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2017

Authors and Affiliations

  1. 1.Oregon Department of Geology and Mineral Industries, Newport Coastal Field OfficeNewportUSA
  2. 2.U.S. Geological Survey, Alaska Science CenterAnchorageUSA
  3. 3.Center for Coastal Resources ManagementVirginia Institute of Marine ScienceGloucester PointUSA
  4. 4.Oregon State UniversityCorvallisUSA
  5. 5.Geological Survey of Canada, Pacific Geoscience CentreSidneyCanada

Personalised recommendations