Forecasting method of ice blocks fall using logistic model and melting degree–days calculation: a case study in northern Gaspésie, Québec, Canada


Ice blocks fall is a serious natural hazard that frequently happens in mountainous cold region. The ice blocks result from the melting and collapse of rockwall icings (ice walls or frozen waterfalls). Environment Canada weather data were analyzed for 440 cases of ice blocks fall events reported in northern Gaspésie by the “Ministère des Transports du Québec.” The available meteorological variables were used to develop an ice blocks fall forecasting tool. The analysis shows that the ice blocks falls are mainly controlled by an increase in the air temperature above the melting point of ice. The temperature variations and the heat transfer into the ice bodies can be expressed by the melting degreedays (DDmelt). The best logistic model was derived by testing a number of combinations of variables against the database (ice blocks fall events and meteorological data). Feeding this model with the meteorological data and using the recorded evolution of DDmelt as a complementary predictive tool allow the forecast of the most hazardous periods on a regional scale, i.e., along the northern Gaspésie roads and on a local scale, i.e., the collapse of some of the most problematic rockwall icings. We also discuss the effects of large daily temperature changes such as drastic drops of temperature below 0 °C and freeze–thaw cycles on the opening of cracks and the collapse of unstable ice structures such as freestanding ice formations.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Electronic supplementary material (videos): ESM_1.mpg and ESM_2.mpg.


DDmelt :

Melting degree–days (°C day)

\({\text{DD}}_{\text{melt}}^{2}\) :

Squared DDmelt (°C2 day2)

DDp :

Positive degree–days (°C day)

\({\text{DD}}_{\text{p}}^{2}\) :

Squared DDp (°C2 day2)

D tr :

Daily temperature range (°C)

F i :

Cooling or freezing intensity (°C)

F t :

Daily freeze–thaw cycle

I g :

Growth index (mm °C)


Daily liquid precipitation (mm)


Two-day antecedent daily liquid precipitation (mm)


Three-day antecedent daily liquid precipitation (mm)

P sf :

Total solid precipitation of November and December in water equivalent (mm W.E.)

P tot :

Daily precipitation in water equivalent (mm W.E.)

T max :

Daily mean maximum temperatures (°C)

T mean :

Daily mean temperatures (°C)

T min :

Daily minimum temperatures (°C)

T mwa :

Average temperature of December, January and February (°C)


  1. Ambach W (1988) Interpretation of the positive-degree–days factor by heat balance characteristics—West Greenland. Nord Hydrol 19(4):217–224

  2. Ancey C (2006) Dynamique des avalanches. Presses polytechniques et universitaires Romandes, Lausanne

  3. Bayard D, Stähli M, Parriaux A, Flühler H (2005) The influence of seasonally frozen soil on the snowmelt runoff at two Alpine sites in southern Switzerland. J Hydrol 309(1–4):66–84

  4. Bianchi A (2004) Frozen waterfalls: how they develop, how they collapse. International Federation of Mountain Guides Association, IFMGA-IVBV-UIAGM, Internal report, Milan, Italy

  5. Braithwaite RJ (1981) On glacier energy balance, ablation, and air temperature. J Glaciol 27(97):381–391

  6. Braithwaite RJ (1995) Positive degree–day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J Glaciol 41(137):153–160

  7. Brisebois D, Nadeau J (2003) Géologie de la Gaspésie et du Bas-Saint-Laurent (SNRC 22A, 22B, 22C, 22G, 22H, 21 N et 21O). Ministère des Ressources Naturelles, de la Faune et des Parcs (MRNFP), Québec. DV 2003-08, échelle 1/250 000

  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, p 488

  9. Environment Canada (1971–2000) Canadian climate normals 1971–2000 station data [on-line]. [consulted April 2014]

  10. Environment Canada (2000–2012) Historical climate data, daily data report [on-line]. [consulted July 2012]

  11. Gadd W (2006) Ice & mixed climbing: modern technique. The Mountaineers Books, Seattle

  12. Gagnon RM (1970) Climat des Chic-Chocs. Ministère des Richesses naturelles, Québec

  13. Gauthier F (2008) Les glaces de paroi: formation, écroulement et impact géomorphologique. In: Thesis, Earth sciences, INRS-ETE, Québec, Canada

  14. Gauthier F (2013) Les glaces de paroi: Glaciologie, thermodynamique et prévision des chutes de blocs de glace sur les routes du nord de la Gaspésie (Québec, Canada). In: Ph.D. Thesis, Faculty of Forestry, Geography and Geomatics, Laval University, Québec, Canada

  15. Gauthier F, Hétu B, Bergeron N (2012) Analyses statistiques des conditions climatiques propices aux chutes de blocs de glace dans les corridors routiers du nord de la Gaspésie, Québec, Canada. Can Geotech J 49(12):1408–1426

  16. Gauthier F, Montagnat M, Weiss J, Allard M, Hétu B (2013) Ice cascade growth and decay: a thermodynamic approach. J Glaciol 59(215):507–523

  17. Gauthier F, Allard M, Hétu B (2015) Ice wall growth and decay: meteorological analysis and modelling. Permafrost Periglac Process 26(1):84–102. doi:10.1002/ppp.1835

  18. Gautschi A (2001) Hydrogeology of a fractured shale (Opalinus Clay): implications for deep geological disposal of radioactive wastes. Hydrogeol J 9(1):97–107

  19. Girard J-F, Hétu B (1994) Les mouvements de masse en Gaspésie septentrionale. Hydro-Québec Report, Rimouski

  20. Hebertson EG, Jenkins MJ (2003) Historic climate factors associated with major avalanche years on the Wasatch Plateau, Utah. Cold Reg Sci Technol 37(3):315–332

  21. Hétu B, Gray JT (1985) Le modelé glaciaire du centre de la Gaspésie septentrionale, Québec. Géog Phys Quatern 39(1):47–66

  22. Hétu B, Girard J-F, Boisjoly J (1994) Les risques naturels reliés à la dynamique des versants dans le nord de la Gaspésie : zone littorale et mont Albert. Bulletin de l’Association québécoise pour l’étude du Quaternaire 20(2):9–15

  23. Hock R (1999) A distributed temperature-index ice—and snowmelt model including potential direct solar radiation. J Glaciol 45(149):101–111

  24. Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282(1–4):104–115

  25. Hosmer D, Lemeshow S (2000) Applied logistic regression. Wiley, New York

  26. Jomelli V, Chochillon C, Brunstein D, Pech P (2003) Hillslope debris flows frequency since the beginning of the 20th century in the French Alps. In: Rickenmann C (ed) IAHS Publication. Millpress, Rotterdam, pp 127–137

  27. Jomelli V, Pech P, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim Change 64(1–2):77–102

  28. Jomelli V, Delval C, Grancher D, Escande S, Brunstein D, Hetu B, Filion L, Pech P (2007) Probabilistic analysis of recent snow avalanche activity and weather in the French Alps. Cold Reg Sci Technol 47(1–2):180–192

  29. Mazerolle MJ (2004) Appendix 1: making sense out of Akaike’s information criterion (AIC): its use and interpretation in model selection and inference from ecological data. In: Mouvements et reproduction des amphibiens en tourbières perturbées. Ph.D. Thesis, Faculty of Forestry and Geomatics, Laval University, Québec, Canada

  30. McCullagh P, Nelder JA (1989) Generalized linear models, monographs on statistics and applied probability. Chapman and Hall, London

  31. Meylan P, Favre A-C, Musy A (2008) Hydrologie fréquentielle: une science prédictive. Suisse, Lausanne

  32. Montagnat M, Weiss J, Cinquin-Lapierre B, Labory PA, Moreau L, Damilano F, Lavigne D (2010) Waterfall ice: formation, structure and evolution. J Glaciol 56(196):225–234

  33. Sepúlveda S, Padilla C (2008) Rain-induced debris and mudflow triggering factors assessment in the Santiago cordilleran foothills, Central Chile. Nat Hazards 47(2):201–215. doi:10.1007/s11069-007-9210-6

  34. Shen HT, Yapa PD (1985) A unified degree–day method for river ice cover thickness simulation. Can J Civ Eng 12(1):54–62

  35. Singh P, Kumar N, Arora M (2000) Degree–day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. J Hydrol 235(1–2):1–11

  36. Sutinen R, Hänninen P, Venäläinen A (2008) Effect of mild winter events on soil water content beneath snowpack. Cold Reg Sci Technol 51(1):56–67

  37. Walkinshaw JL, Santi PM (1996) Chapter 21: Shales and other degradable materials. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, special report 247. National Academy Press, Washington, D.C.

  38. Weiss J, Montagnat M, Cinquin-Lapierre B, Labory PA, Moreau L, Damilano F, Lavigne D (2011) Waterfall ice: mechanical stability of vertical structures. J Glaciol 57(203):407–415

  39. Xu W, Yu W, Zhang G (2012) Prediction method of debris flow by logistic model with two types of rainfall: a case study in the Sichuan, China. Nat Hazards 62(2):733–744. doi:10.1007/s11069-011-9988-0

  40. Zhang Y, Wang S, Barr AG, Black TA (2008) Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Reg Sci Technol 52(3):355–370

Download references


This research was made possible through the research funding of the Natural Sciences and Engineering Research Council of Canada (NSERC). We would also like to thanks the M.T.Q. Landslide section for their financial contribution to this study. The authors also wish to thank the staff of the M.T.Q. Service Centre in Sainte-Anne-des-Monts for their sincere and dedicated collaborations.

Author information

Correspondence to F. Gauthier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 26494 kb)

Supplementary material 2 (MPG 22171 kb)

Supplementary material 1 (MPG 26494 kb)

Supplementary material 2 (MPG 22171 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gauthier, F., Hétu, B. & Allard, M. Forecasting method of ice blocks fall using logistic model and melting degree–days calculation: a case study in northern Gaspésie, Québec, Canada. Nat Hazards 79, 855–880 (2015) doi:10.1007/s11069-015-1880-x

Download citation


  • Ice blocks fall
  • Ice avalanche
  • Logistic regression
  • Degree–day
  • Predictive model