Advertisement

Neuropsychology Review

, Volume 28, Issue 4, pp 470–495 | Cite as

Evaluating Spelling in Glioma Patients Undergoing Awake Surgery: a Systematic Review

  • Fleur van Ierschot
  • Roelien Bastiaanse
  • Gabriele MiceliEmail author
Review

Abstract

A main goal of awake surgery is to preserve language in order to facilitate return to work and maintain quality of life. Although spelling has become crucial in daily life, it has received little attention in awake surgery practice. We review assessments of spelling carried out in awake surgery studies, to inspect how current neurofunctional theories of spelling may guide pre-, intra- and post-operative neurosurgical practice. A systematic database search in Embase, Medline, PubMed and Web of Science identified studies reporting on spelling assessment in glioma patients undergoing awake surgery. Twenty-three studies were included, of which only 9 report details on spelling assessments. We evaluate the incidence of dysgraphia in glioma patients, the types of spelling errors as a function of tumor location, and the specificity of spelling sites with respect to other language functions. Post-operative dysgraphia arose in 26.9% of the patients with preserved pre-operative handwriting, and persisted in 45.0% of them at follow-up. Intra-operative stimulation interfered only with handwriting in 37.7% of the patients. A network of frontal, parietal and temporal regions was found to underlie central and peripheral spelling processes. Evidence on spelling performance in patients undergoing awake surgery for gliomas is surprisingly scarce. With the limitations inherent in the small number of observations, results converge with the neurofunctional knowledge accruing from studies of stroke cases. Such knowledge should be exploited in more thorough investigations of spelling skills in glioma patients. Implications for clinical and neuroscientific practice are discussed, as well as possible strategies to overcome current limitations.

Keywords

Awake surgery Glioma Language preservation Spelling Handwriting assessment Systematic review 

Abbreviations

AG

Angular gyrus

DES

Direct Electrical Stimulation

IFG

Inferior frontal gyrus

IFOF

Inferior fronto-occipital fasciculus

ITG

Inferior temporal gyrus

MFG

Middle frontal gyrus

MTG

Middle temporal gyrus

PoCG

Postcentral gyrus

PreCG

Precentral gyrus

SFG

Superior frontal gyrus

SMA

Supplementary motor area

SMG

Supramarginal gyrus

SPL

Superior parietal lobe

STG

Superior temporal gyrus

Notes

Acknowledgements

Funding was provided by the European Commission within the action nr 2014—0685/001-001-EMJD (Framework Partnership Agreement 2012-2025) to FvI and by PAT (Provincia Autonoma di Trento) to GM. RB was partially supported by the Center of Language and Brain NRU Higher School of Economics, RF government grant, ag. No 14.641.31.0004.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest

References

  1. Alexander, M. P., Friedman, R. B., Loverso, F., & Fischer, S. R. (1992). Lesion localization of phonological agraphia. Brain and Language, 43(1), 83–95.Google Scholar
  2. Almairac, F., Herbet, G., Moritz-Gasser, S., Champfleur, N. M., & Duffau, H. (2015). The left inferior fronto-occipital fasciculus subserves language semantics: A multilevel lesion study. Brain Structure & Function, 220(4), 1983–1995.Google Scholar
  3. Auerbach, S. H., & Alexander, M. P. (1981). Pure agraphia and unilateral optic ataxia associated with a left superior parietal lobule lesion. Journal of Neurology, Neurosurgery & Psychiatry, 44(5), 430–432.  https://doi.org/10.1136/jnnp.44.5.430. Google Scholar
  4. Axer, H., Klingner, C. M., & Prescher, A. (2013). Fiber anatomy of dorsal and ventral language streams. Brain and Language, 127(2), 192–204.  https://doi.org/10.1016/j.bandl.2012.04.015.Google Scholar
  5. Basso, A., Taborelli, A., & Vignolo, L. A. (1978). Dissociated disorders of speaking and writing in aphasia. Journal of Neurology, Neurosurgery & Psychiatry, 41(6), 556–563.  https://doi.org/10.1136/jnnp.41.6.556.Google Scholar
  6. Beauvois, M. F., & Dérouesné, J. (1981). Lexical or orthographic agraphia. Brain, 104(1), 21–49.Google Scholar
  7. Beeson, P., Rapcsak, S. Z., Plante, E., Chargualaf, J., Chung, A., Johnson, S., & Trouard, T. (2003). The neural substrates of writing: A functional magnetic resonance imaging study. Aphasiology, 17(6–7), 647–665.  https://doi.org/10.1080/02687030344000067.Google Scholar
  8. Béland, R., & Lecours, A. R. (1990). The mt-86 β aphasia battery: A subset of normative data in relation to age and level of school education. Aphasiology, 4(5), 439–462.  https://doi.org/10.1080/02687039008248786.Google Scholar
  9. Bello, L., Gallucci, M., Fava, M., Carrabba, G., Giussani, C., Acerbi, F., Baratta, P., Songa, V., Conte, V., Branca, V., Stocchetti, N., Papagno, C., & Gaini, S. M. (2007). Intraoperative subcortical languagetract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery, 60(1), 67–82.  https://doi.org/10.1227/01.NEU.0000249206.58601.DE.Google Scholar
  10. Berger, M. S., & Rostomily, R. C. (1997). Low grade gliomas: Functional mapping resection strategies, extent of resection, and outcome. Journal of Neuro-Oncology, 34(1), 85–101.Google Scholar
  11. Bizzi, A., Nava, S., Ferrè, F., Castelli, G., Aquino, D., Ciaraffa, F., Broggi, G., DiMeco, F., & Piacentini, S. (2012). Aphasia induced by gliomas growing in the ventrolateral frontal region: Assessment with diffusion MR tractography, functional MR imaging and neuropsychology. Cortex, 48(2), 255–272.  https://doi.org/10.1016/j.cortex.2011.11.015.Google Scholar
  12. Bub, D., & Kertesz, A. (1982). Evidence for lexicographic processing in a patient with preserved written over oral single word naming. Brain, 105(4), 697–717.  https://doi.org/10.1093/brain/105.4.697.Google Scholar
  13. Buchwald, A., & Rapp, B. (2009). Distinctions between orthographic long-term memory and working memory. Cognitive Neuropsychology, 26(8), 724–751.  https://doi.org/10.1080/02643291003707332.Google Scholar
  14. Caramazza, A., Miceli, G., Villa, G., & Romani, C. (1987). The role of the graphemic buffer in spelling: Evidence from a case of acquired dysgraphia. Cognition, 26(1), 59–85.Google Scholar
  15. Catani, M. (2006). Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Current Opinion in Neurology, 19(6), 599–606.  https://doi.org/10.1097/01.wco.0000247610.44106.3f.Google Scholar
  16. Catani, M., & ffytche, D. H. (2005). The rises and falls of disconnection syndromes. Brain, 128(10), 2224–2239.  https://doi.org/10.1093/brain/awh622.Google Scholar
  17. Chen, H. Y., Chang, E. C., Chen, S. H. Y., Lin, Y. C., & Wu, D. H. (2016). Functional and anatomical dissociation between the orthographic lexicon and the orthographic buffer revealed in reading and writing Chinese characters by fMRI. NeuroImage, 129, 105–116.  https://doi.org/10.1016/j.neuroimage.2016.01.009.Google Scholar
  18. Chialant, D., & Caramazza, A. (1998). Perceptual and lexical factors in a case of letter-by-letter reading. Cognitive Neuropsychology, 15(1–2), 167–201.  https://doi.org/10.1080/026432998381258.Google Scholar
  19. Cloutman, L., Gingis, L., Newhart, M., Davis, C., Heidler-Gary, J., Crinion, J., & Hillis, A. E. (2009). A neural network critical for spelling. Annals of Neurology, 66(2), 249–253.  https://doi.org/10.1002/ana.21693.Google Scholar
  20. De Witte, E., & Mariën, P. (2013). Clinical neurology and neurosurgery. Clinical Neurology and Neurosurgery, 115(2), 127–145.  https://doi.org/10.1016/j.clineuro.2012.09.015.Google Scholar
  21. Dejerine, J. (1891). Sur un cas de cécité verbale avec agraphie suivi d’autopsie. Mémoires de la Société de Biologie, 3, 197–201.Google Scholar
  22. Duffau, H. (2007). Contribution of cortical and subcortical electrostimulation in brain glioma surgery: Methodological and functional considerations. Neurophysiologie Clinique = Clinical Neurophysiology, 37(6), 373–382.  https://doi.org/10.1016/j.neucli.2007.09.003.Google Scholar
  23. Duffau, H. (2017). A two-level model of interindividual anatomo-functional variability of the brain and its implications for neurosurgery. Cortex, 86, 303–313.Google Scholar
  24. Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., & Capelle, L. (2005a). New insights into the anatomo-functional connectivity of the semantic system: A study using cortico-subcortical electrostimulations. Brain, 128(Pt 4), 797–810.  https://doi.org/10.1093/brain/awh423.Google Scholar
  25. Duffau, H., Lopes, M., Arthuis, F., Bitar, A., Sichez, J.-P., Van Effenterre, R., & Capelle, L. (2005b). Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: A comparative study between two series without (1985-96) and with (1996-2003) functional mapping in the same institution. Journal of Neurology, Neurosurgery & Psychiatry, 76(6), 845–851.  https://doi.org/10.1136/jnnp.2004.048520.Google Scholar
  26. Duffau, H., Peggy Gatignol, S. T., Mandonnet, E., Capelle, L., & Taillandier, L. (2008). Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with grade II glioma in the left dominant hemisphere. Journal of Neurosurgery, 109(3), 461–471.  https://doi.org/10.3171/JNS/2008/109/9/0461.Google Scholar
  27. Duffau, H., Moritz-Gasser, S., & Mandonnet, E. (2014). A re-examination of neural basis of language processing: Proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain and Language., 131, 1–10.Google Scholar
  28. Ellis, A. W., & Young, A. W. (1988). Human cognitive neuropsychology. Hove, East Sussex: Lawrence Erlbaum Associates.Google Scholar
  29. Exner, S. (1881). Untersuchungen über die Localisation der Functionen in der Grosshirnrinde des Menschen. Braumüller.Google Scholar
  30. Friederici, A. D., Schoenle, P. W., & Goodglass, H. (1981). Mechanisms underlying writing and speech in aphasia. Brain and Language, 13(2), 212–222.  https://doi.org/10.1016/0093-934X(81)90091-2.Google Scholar
  31. Geschwind, N. (1970). The organization of language and the brain. Science, 170(3961), 940–944.Google Scholar
  32. Giussani, C., Roux, F. E., Lubrano, V., Gaini, S. M., & Bello, L. (2007). Review of language organisation in bilingual patients: What can we learn from direct brain mapping? Acta Neurochirurgica, 149(11), 1109–1116.  https://doi.org/10.1007/s00701-007-1266-2.Google Scholar
  33. Goodglass, H. (2000). Boston diagnostic aphasia examination: Short form record booklet. Lippincott Williams & Wilkins.Google Scholar
  34. Goodman, R. A., & Caramazza, A. (1986). Dissociation of spelling errors in written and oral spelling: The role of allographic conversion in writing. Cognitive Neuropsychology, 3(2), 179–206.  https://doi.org/10.1080/02643298608252675.Google Scholar
  35. Henry, M. L., Beeson, P. M., Stark, A. J., & Rapcsak, S. Z. (2007). The role of left perisylvian cortical regions in spelling, 100(1), 44–52.  https://doi.org/10.1016/j.bandl.2006.06.011.
  36. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.  https://doi.org/10.1016/j.cognition.2003.10.011.Google Scholar
  37. Hier, D. B., & Mohr, J. P. (1977). Incongruous oral and written naming. Evidence for a subdivision of the syndrome of Wernicke's aphasia. Brain and Language, 4(1), 115–126.Google Scholar
  38. Hillis, A. E. (2004). Progress in cognitive neuroscience research on dysgraphia: Introduction. Neurocase, 10(2), 89–90.  https://doi.org/10.1080/13554790409609940.Google Scholar
  39. Hillis, A. E., Rapp, B., & Caramazza, A. (1999). When a rose is a rose in speech but a tulip in writing. Cortex, 35(3), 337–356.Google Scholar
  40. Hillis, A. E., Chang, S., Breese, E., & Heidler, J. (2004). The crucial role of posterior frontal regions in modality specific components of the spelling process. Neurocase, 10(2), 175–187.  https://doi.org/10.1080/13554790409609947.Google Scholar
  41. Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., Negwer, C., Droese, D., Zimmer, C., Meyer, B., Ringel, F., & Krieg, S. M. (2015). Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. Journal of Neurosurgery, 123(1), 212–225.  https://doi.org/10.3171/2014.9.JNS14929.Google Scholar
  42. Ilmberger, J., Ruge, M., Kreth, F.-W., Briegel, J., Reulen, H. J., & Tonn, J. C. (2008). Intraoperative mapping of language functions: A longitudinal neurolinguistic analysis. Journal of Neurosurgery, 109(4), 583–592.  https://doi.org/10.3171/JNS/2008/109/10/0583.Google Scholar
  43. Kim, S. S., McCutcheon, I. E., Suki, D., Weinberg, J. S., Sawaya, R., Lang, F. F., Ferson, D., Heimberger, A. B., DeMonte, F., & Prabhu, S. S. (2009). Awake craniotomy for brain tumors near eloquent cortex. Neurosurgery, 64(5), 836–846.  https://doi.org/10.1227/01.NEU.0000342405.80881.81.Google Scholar
  44. Kinoshita, M., Nakada, M., Okita, H., Hamada, J.-I., & Hayashi, Y. (2014). Predictive value of fractional anisotropy of the arcuate fasciculus for the functional recovery of language after brain tumor resection: A preliminary study. Clinical Neurology and Neurosurgery, 117, 45–50.  https://doi.org/10.1016/j.clineuro.2013.12.002.Google Scholar
  45. Klein, M., Heimans, J. J., Aaronson, N. K., van der Ploeg, H. M., Grit, J., Muller, M., et al. (2002). Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: A comparative study. The Lancet, 360(9343), 1361–1368.  https://doi.org/10.1016/S0140-6736(02)11398-5.Google Scholar
  46. Klein, M., Duffau, H., & De Witt Hamer, P. C. (2012). Cognition and resective surgery for diffuse infiltrative glioma: An overview. Journal of Neuro-Oncology, 108(2), 309–318.  https://doi.org/10.1007/s11060-012-0811-x.Google Scholar
  47. Krieg, S. M., Sollmann, N., Hauck, T., Ille, S., Meyer, B., & Ringel, F. (2014). Repeated mapping of cortical language sites by preoperative navigated transcranial magnetic stimulation compared to repeated intraoperative DCS mapping in awake craniotomy. BMC Neuroscience, 15(1), 1–10.  https://doi.org/10.1186/1471-2202-15-20.Google Scholar
  48. Lesser, R. P., Lueders, H., Dinner, D. S., Hahn, J., & Cohen, L. (1984). The location of speech and writing functions in the frontal language area. Brain, 107(1), 275–291.Google Scholar
  49. Lubrano, V., Roux, F.-E., & Démonet, J.-F. (2004). Writing in frontal areas: A cortical stimulation study. Journal of Neurosurgery, 101(11), 793–804.  https://doi.org/10.1007/s00701-007-1266-2.Google Scholar
  50. Lubrano, V., Prod’homme, K., Démonet, J.-F., & Köpke, B. (2012). Language monitoring in multilingual patients undergoing awake craniotomy: A case study of a German-English-French trilingual patient with a WHO grade II glioma. Journal of Neurolinguistics, 25(6), 567–578.Google Scholar
  51. Ludersdorfer, P., Kronbichler, M., & Wimmer, H. (2015). Accessing orthographic representations from speech: The role of left ventral occipitotemporal cortex in spelling. Human Brain Mapping, 36(4), 1393–1406.  https://doi.org/10.1002/hbm.22709.Google Scholar
  52. Magrassi, L., Bongetta, D., Bianchini, S., Berardesca, M., & Arienta, C. (2010). Central and peripheral components of writing critically depend on a defined area of the dominant superior parietal gyrus. Brain Research, 1346(C), 145–154.  https://doi.org/10.1016/j.brainres.2010.05.046.Google Scholar
  53. Maldonado, I. L., Moritz-Gasser, S., de Champfleur, N. M., Bertram, L., Moulinié, G., & Duffau, H. (2011). Surgery for gliomas involving the left inferior parietal lobule: New insights into the functional anatomy provided by stimulation mapping in awake patients. Journal of Neurosurgery, 115(4), 770–779.  https://doi.org/10.3171/2011.5.JNS112.Google Scholar
  54. Mandonnet, E., Sarubbo, S., & Duffau, H. (2017). Proposal of an optimized strategy for intraoperative testing of speech and language during awake mapping. Neurosurgical Review, 40(1), 29–35.  https://doi.org/10.1007/s10143-016-0723-x.
  55. Mariën, P., Pickut, B., Engelborghs, S., Martin, J.-J., & De Deyn, P. (2001). Phonological agraphia following a focal anterior insulo-opercular infarction. Neuropsychologia, 39(8), 845–855.Google Scholar
  56. Miceli, G., & Capasso, R. (2006). Spelling and dysgraphia. Cognitive Neuropsychology, 23(1), 110–134.  https://doi.org/10.1080/02643290500202730.Google Scholar
  57. Miceli, G., Silveri, M. C., & Caramazza, A. (1985). Cognitive analysis of a case of pure dysgraphia, 25(2), 187–212.  https://doi.org/10.1016/0093-934X(85)90080-X.Google Scholar
  58. Miceli, G., Laudanna, A., Burani, C., & Capasso, R. (1994). Batteria per l’Analisi del Deficit Afasico. Rome: CEPSAG.Google Scholar
  59. Miceli, G., Capasso, R., Benvegnù, B., & Caramazza, A. (2004). The categorical distinction of vowel and consonant representations: Evidence from dysgraphia. Neurocase, 10(2), 109–121.  https://doi.org/10.1080/13554790409609942.Google Scholar
  60. Miceli, G., Capasso, R., Monti, A., Santini, B., & Talacchi, A. (2012). Language testing in brain tumor patients. Journal of Neuro-Oncology, 108(2), 247–252.  https://doi.org/10.1007/s11060-012-0810-y.Google Scholar
  61. Moher, D., Liberati, A., Tetzlaff, J., Altman, D., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), 1–6.Google Scholar
  62. Moser, T., Bulubas, L., Sabih, J., Conway, N., Wildschutz, N., Sollmann, N., Meyer, B., Ringel, F., & Krieg, S. M. (2017). Resection of navigated transcranial magnetic stimulation-positive Prerolandic motor areas causes permanent impairment of motor function. Neurosurgery, 81(1), 99–110.  https://doi.org/10.1093/neuros/nyw169.Google Scholar
  63. Motomura, K., Fujii, M., Maesawa, S., Kuramitsu, S., Natsume, A., & Wakabayashi, T. (2014). Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: A brain mapping study. Journal of Neurosurgery, 121(1), 142–148.  https://doi.org/10.3171/2014.2.JNS131234.Google Scholar
  64. Ojemann, G. A. (1983). Brain organization for language from the perspective of electrical stimulation mapping. The Behavioral and Brain Sciences, 6(02), 189–230.Google Scholar
  65. Ojemann, G. A., & Whitaker, H. A. (1978). Language localization and variability. Brain and Language, 6(2), 239–260.Google Scholar
  66. Ojemann, G. A., Ojemann, J., Lettich, E., & Berger, M. S. (1989). Cortical language localization in left, dominant hemisphere - an electrical-stimulation mapping investigation in 117 patients. Journal of Neurosurgery, 71(3), 316–326.  https://doi.org/10.3171/jns.1989.71.3.0316.Google Scholar
  67. Ojemann, J. G., Ojemann, G. A., & Lettich, E. (2002). Cortical stimulation mapping of language cortex by using a verb generation task: Effects of learning and comparison to mapping based on object naming. Journal of Neurosurgery, 97(1), 33–38.  https://doi.org/10.3171/jns.2002.97.1.0033.Google Scholar
  68. Patterson, K., & Shewell, C. (1987). Speak and spell: Dissociation and word-class effects. In M. Coltheart, G. Sartori, & R. Job (Eds.), The cognitive neuropsychology of language (pp. 273–294). London: Erlbaum.Google Scholar
  69. Picht, T., Krieg, S. M., Sollmann, N., Rösler, J., Niraula, B., Neuvonen, T., Savolainen, P., Lioumis, P., Mäkelä, J. P., Deletis, V., Meyer, B., Vajkoczy, P., & Ringel, F. (2013). A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery, 72(5), 808–819.  https://doi.org/10.1227/NEU.0b013e3182889e01.Google Scholar
  70. Planton, S., Jucla, M., Roux, F. E., & Démonet, J.-F. (2013). The ``handwriting brain“”: A meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex, 49(10), 2772–2787.  https://doi.org/10.1016/j.cortex.2013.05.011.Google Scholar
  71. Posteraro, L., Zinelli, P., & Mazzucchi, A. (1988). Selective impairment of the Graphemic Buffer in acquired dysgraphia: a case study (Vol. 35, pp. 274–286).Google Scholar
  72. Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197(3), 335–359.  https://doi.org/10.1046/j.1469-7580.2000.19730335.x.Google Scholar
  73. Purcell, J. J. (2012). The neural substrates underlying both spelling and reading.Google Scholar
  74. Purcell, J. J., Turkeltaub, P., Eden, G. F., & Rapp, B. (2011). Examining the central and peripheral processes of written word production through meta-analysis. Frontiers in Psychology, 2, 1–16.  https://doi.org/10.3389/fpsyg.2011.00239/abstract.Google Scholar
  75. Rapcsak, S. Z., & Beeson, P. M. (2004). The role of left posterior inferior temporal cortex in spelling. Neurology, 62(12), 2221–2229.Google Scholar
  76. Rapcsak, S. Z., Arthur, S. A., & Rubens, A. B. (1988). Lexical agraphia from focal lesion of the left precentral gyrus. Neurology, 38(7), 1119–1123.Google Scholar
  77. Rapcsak, S. Z., Kim, E. S., Henry, M. L., Andersen, S. M., & Beeson, P. M. (2009). The Contributions of the Visual Word Form Area to Skilled Reading. Neurology, 72(11), A265–A265.Google Scholar
  78. Rapp, B., & Dufor, O. (2011). The neurotopography of written word production: An fMRI investigation of the distribution of sensitivity to length and frequency. Journal of Cognitive Neuroscience, 23(12), 4067–4081.  https://doi.org/10.1162/jocn_a_00109.Google Scholar
  79. Rapp, B., & Lipka, K. (2011). The literate brain: The relationship between spelling and reading. Journal of Cognitive Neuroscience, 23(5), 1180–1197.  https://doi.org/10.1162/jocn.2010.21507.Google Scholar
  80. Rapp, B., Purcell, J. J., Hillis, A. E., Capasso, R., & Miceli, G. (2015). Neural bases of orthographic long-term memory and working memory in dysgraphia. Brain, 139(2), 588–604.  https://doi.org/10.1093/brain/awv348.Google Scholar
  81. Roeltgen, D. P., & Heilman, K. M. (1984). Lexical agraphia - further support for the 2-system hypothesis of linguistic agraphia. Brain, 107(SEP), 811–827.Google Scholar
  82. Roeltgen, D. P., Roeltgen, D., & Heilman, K. M. (1985). Review of agraphia and a proposal for an anatomically-based neuropsychological model of writing. Applied PsychoLinguistics, 6(03), 205–230.Google Scholar
  83. Rofes, A., & Miceli, G. (2014). Language mapping with verbs and sentences in awake surgery: A review. Neuropsychology Review, 24(2), 185–199.  https://doi.org/10.1007/s11065-014-9258-5.Google Scholar
  84. Rofes, A., Mandonnet, E., Godden, J., Baron, M. H., Colle, H., Darlix, A., de Aguiar V., Duffau H., Herbet G., Klein M., Lubrano V., Martino J., Mathew R., Miceli G., Moritz-Gasser S., Pallud J., Papagno C., Rech F., Robert E., Rutten G.J., Santarius T., Satoer D., Sierpowska J., Smits A., Skrap M., Spena G., Visch E., de Witte E., Zetterling M., Wager M. (2017). Survey on current cognitive practices within the European low-grade glioma network: Towards a European assessment protocol, 1–13. 159, 7, 1167, 1178  https://doi.org/10.1007/s00701-017-3192-2.Google Scholar
  85. Roux, F. E., Boetto, S., Sacko, O., Chollet, F., & Tremoulet, M. (2003). Writing, calculating, and finger recognition in the region of the angular gyrus: A cortical stimulation study of Gerstmann syndrome. Journal of Neurosurgery, 99(4), 716–727.  https://doi.org/10.3171/jns.2003.99.4.0716.Google Scholar
  86. Roux, F. E., Lubrano, V., Lauwers-Cances, V., Trémoulet, M., Mascott, C. R., & Démonet, J. F. (2004). Intra-operative mapping of cortical areas involved in reading in mono- and bilingual patients. Brain, 127(8), 1796–1810.  https://doi.org/10.1093/brain/awh204.Google Scholar
  87. Roux, F. E., Dufor, O., Giussani, C., Wamain, Y., Draper, L., Longcamp, M., & Démonet, J.-F. (2009). The graphemic/motor frontal area Exner's area revisited. Annals of Neurology, 66(4), 537–545.  https://doi.org/10.1002/ana.21804.Google Scholar
  88. Roux, F. E., Durand, J.-B., Réhault, E., Planton, S., Draper, L., & Démonet, J.-F. (2014). The neural basis for writing from dictation in the temporoparietal cortex. Cortex, 50(C), 64–75.  https://doi.org/10.1016/j.cortex.2013.09.012.Google Scholar
  89. Sakurai, Y., Onuma, Y., Nakazawa, G., Ugawa, Y., Momose, T., Tsuji, S., & Mannen, T. (2007). Parietal dysgraphia: Characterization of abnormal writing stroke sequences, character formation and character recall. Behavioural Neurology, 18(2), 99–114.Google Scholar
  90. Sanai, N., Mirzadeh, Z., & Berger, M. S. (2008). Functional outcome after language mapping for glioma resection. New England Journal of Medicine, 358(1), 18–27.  https://doi.org/10.1056/NEJMoa067819.Google Scholar
  91. Santini, B., Talacchi, A., Squintani, G., Casagrande, F., Capasso, R., & Miceli, G. (2012). Cognitive outcome after awake surgery for tumors in language areas. Journal of Neuro-Oncology, 108(2), 319–326.  https://doi.org/10.1007/s11060-012-0817-4.Google Scholar
  92. Sarubbo, S., De Benedictis, A., Maldonado, I. L., Basso, G., & Duffau, H. (2013). Frontal terminations for the inferior fronto-occipital fascicle: Anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Structure & Function, 218(1), 21–37.  https://doi.org/10.1007/s00429-011-0372-3.Google Scholar
  93. Sarubbo, S., De Benedictis, A., Merler, S., Mandonnet, E., Balbi, S., Granieri, E., & Duffau, H. (2015). Towards a functional atlas of human white matter. Human Brain Mapping, 36(8), 3117–3136.  https://doi.org/10.1002/hbm.22832.Google Scholar
  94. Satoer, D., Vork, J., Visch-Brink, E., Smits, M., Dirven, C., & Vincent, A. (2012). Cognitive functioning early after surgery of gliomas in eloquent areas. Journal of Neurosurgery, 117(5), 831–838.  https://doi.org/10.3171/2012.7.JNS12263.Google Scholar
  95. Satoer, D., Visch-Brink, E., Smits, M., Kloet, A., Looman, C., Dirven, C., & Vincent, A. (2014). Long-term evaluation of cognition after glioma surgery in eloquent areas. Journal of Neuro-Oncology, 116(1), 153–160.  https://doi.org/10.1007/s11060-013-1275-3.Google Scholar
  96. Scarone, P., Gatignol, P., Guillaume, S., Denvil, D., Capelle, L., & Duffau, H. (2009). Agraphia after awake surgery for brain tumor: New insights into the anatomo-functional network of writing. Surgical Neurology, 72(3), 223–241.  https://doi.org/10.1016/j.surneu.2008.10.074.Google Scholar
  97. Shallice, S. (1981). Phonological agraphia and the lexical route in writing. Brain, 104(3), 413–429.  https://doi.org/10.1093/brain/104.3.413.Google Scholar
  98. Shallice, T., Rumiati, R. I., & Zadini, A. (2000). The selective impairment of the phonological output buffer. Cognitive Neuropsychology, 17(6), 517–546.  https://doi.org/10.1080/02643290050110638.Google Scholar
  99. Smith, J. S., Chang, E. F., Lamborn, K. R., Chang, S. M., Prados, M. D., Cha, S., Tihan, T., VandenBerg, S., McDermott, M. W., & Berger, M. S. (2008). Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 26(8), 1338–1345.  https://doi.org/10.1200/JCO.2007.13.9337.Google Scholar
  100. Spena, G., Nava, A., Cassini, F., Pepoli, A., Bruno, M., D’Agata, F., et al. (2010). Preoperative and intraoperative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology, correlation, and usefulness based on clinical outcomes. Acta Neurochirurgica, 152(11), 1835–1846.  https://doi.org/10.1007/s00701-010-0764-9.
  101. Sporns, O. (2013). The human connectome: Origins and challenges. NeuroImage, 80, 53–61.  https://doi.org/10.1016/j.neuroimage.2013.03.023.Google Scholar
  102. Szelenyi, A., Bello, L., Duffau, H., Fava, E., Feigl, G. C., Galanda, M., et al. (2010). Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus, 28, 1–8.  https://doi.org/10.3171/2009.12.FOCUS09237).
  103. Talacchi, A., Santini, B., Casartelli, M., Monti, A., Capasso, R., & Miceli, G. (2013). Awake surgery between art and science. Part II: Language and cognitive mapping. Functional Neurology, 28(3), 223–239.Google Scholar
  104. Tanji, K., Sakurada, K., Funiu, H., Matsuda, K., Kayama, T., Ito, S., & Suzuki, K. (2015). Functional significance of the electrocorticographic auditory responses in the premotor cortex. Frontiers in Neuroscience, 9, 78.Google Scholar
  105. Taphoorn, M. J. B., & Klein, M. (2004). Cognitive deficits in adult patients with brain tumours. The Lancet Neurology, 3(3), 159–168.  https://doi.org/10.1016/S1474-4422(04)00680-5.Google Scholar
  106. Taphoorn, M. J. B., & Niël, C. G. (2008). Low-grade gliomas. In C. A. Meyers & J. R. Perry (Eds.), Cognition and Cancer (pp. 142–155). Cambridge: Cambridge University Press.  https://doi.org/10.1017/CBO9780511545900.011.Google Scholar
  107. Teixidor, P., Gatignol, P., Leroy, M., Masuet-Aumatell, C., Capelle, L., & Duffau, H. (2007). Assessment of verbal working memory before and after surgery for low-grade glioma. Journal of Neuro-Oncology, 81(3), 305–313.  https://doi.org/10.1007/s11060-006-9233-y.Google Scholar
  108. Thomson, A. M., Taylor, R., & Whittle, I. R. (1998). Assessment of communication impairment and the effects of resective surgery in solitary, right-sided supratentorial intracranial tumours: A prospective study. British Journal of Neurosurgery, 12(5), 423–429.Google Scholar
  109. Tomasino, B., Marin, D., Maieron, M., D'Agostini, S., Fabbro, F., Skrap, M., & Luzzatti, C. (2015a). Double-letter processing in surface dyslexia and dysgraphia following a left temporal lesion: A multimodal neuroimaging study. Cortex, 73, 112–130.  https://doi.org/10.1016/j.cortex.2015.08.010.Google Scholar
  110. Tomasino, B., Marin, D., Maieron, M., D'Agostini, S., Medeossi, I., Fabbro, F., Skrap, M., & Luzzatti, C. (2015b). A multimodal mapping study of conduction aphasia with impaired repetition and spared reading aloud. Neuropsychologia, 70(C), 214–226.  https://doi.org/10.1016/j.neuropsychologia.2015.02.023.Google Scholar
  111. Tonn, J. C. (2007). Awake craniotomy for monitoring of language function: Benefits and limits. Acta Neurochirurgica, 149(12), 1197–1198.  https://doi.org/10.1007/s00701-007-1368-x.Google Scholar
  112. Tranel, D., Damasio, H., & Damasio, A. R. (1997). A neural basis for the retrieval of conceptual knowledge. Neuropsychologia, 35(10), 1319–1327.Google Scholar
  113. Tsapkini, K., & Rapp, B. (2010). The orthography-specific functions of the left fusiform gyrus: Evidence of modality and category specificity. Cortex, 46(2), 185–205.  https://doi.org/10.1016/j.cortex.2009.02.025.Google Scholar
  114. Wefel, J. S., & Schagen, S. B. (2012). Chemotherapy-related cognitive dysfunction. Current Neurology and Neuroscience Reports, 12(3), 267–275.  https://doi.org/10.1007/s11910-012-0264-9.Google Scholar
  115. Yoshii, Y., Tominaga, D., Sugimoto, K., Tsuchida, Y., Hyodo, A., Yonaha, H., & Kushi, S. (2008). Cognitive function of patients with brain tumor in pre- and postoperative stage. Surgical Neurology, 69(1), 51–61.Google Scholar
  116. Zemmoura, I., Herbet, G., Moritz-Gasser, S., & Duffau, H. (2015). New insights into the neural network mediating reading processes provided by cortico-subcortical electrical mapping. Human Brain Mapping, 36(6), 2215–2230.  https://doi.org/10.1002/hbm.22766.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Doctorate for Experimental Approaches to Language and Brain (IDEALAB)Universities of Trento, Groningen, Newcastle, Potsdam and Macquarie UniversityTrentoItaly
  2. 2.Center for Language and Cognition Groningen (CLCG)University of GroningenGroningenthe Netherlands
  3. 3.Center for Mind/Brain Science (CiMeC)University of TrentoRoveretoItaly
  4. 4.National Research University Higher School of Economics, Russian FederationMoscowRussia
  5. 5.Centro Linceo Interdisciplinare Beniamino SegreAccademia dei LinceiRomeItaly

Personalised recommendations