Advertisement

Neuropsychology Review

, Volume 28, Issue 4, pp 453–469 | Cite as

A Systematic Review of Cognitive Outcomes in Angiographically Negative Subarachnoid Haemorrhage

  • Tom BurkeEmail author
  • Stephanie Hughes
  • Alan Carr
  • Mohsen Javadpour
  • Niall Pender
Review

Abstract

Clinical outcomes, including performance on cognitive assessment, in patients with angiographically negative subarachnoid haemorrhage (anSAH) are often interpreted as benign with a good prognostic trajectory. However, diffuse cognitive deficits have been reported within this patient cohort resulting from anSAH, albeit to a lesser extent when compared to other neurovascular events. We consider cognitive outcomes in relation to anSAH to systematically review reported deficits, with a view to quantify and categorise cognitive impairment in this cohort. Anxiety and depression were also included within this review, provided they were assessed alongside cognitive function. Performance deficits in attention and executive function are commonly reported, with set-shifting and interference tasks most commonly impaired in patients. Non-executive cognitive functions are negatively implicated also. Clinical implications and hypotheses relating to the source of these deficits are discussed. This review was formally registered with PROSPERO (CRD42017075294).

Keywords

Cognition Neuropsychology Subarachnoid Haemorrhage of unknown origin Angiographically negative subarachnoid Haemorrhage Subarachnoid hemorrhage Perimesencephalic subarachnoid Haemorrhage Non-aneurysmal subarachnoid Haemorrhage 

Notes

Compliance with Ethical Standards

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Supplementary material

11065_2018_9389_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 39 kb)

References

  1. Al-Shahi, R., White, P. M., Davenport, R. J., & Lindsay, K. W. (2006). Subarachnoid haemorrhage. BMJ: British Medical Journal, 333(7561), 235–240.CrossRefGoogle Scholar
  2. Alfieri, A., Gazzeri, R., Pircher, M., Unterhuber, V., & Schwarz, A. (2011). A prospective long-term study of return to work after nontraumatic non-aneurysmal subarachnoid hemorrhage. Journal of Clinical Neuroscience, 18(11), 1478–1480.CrossRefGoogle Scholar
  3. Alfieri, A., Unterhuber, V., Pircher, M., Schwarz, A., Gazzeri, R., Reinert, M., & Widmer, H. R. (2008). Psychosocial and neurocognitive performance after spontaneous non-aneurysmal subarachnoid hemorrhage related to the APOE-ϵ 4 genotype: A prospective 5-year follow-up study. Journal of Neurosurgery, 109(6), 1019–1026.CrossRefGoogle Scholar
  4. Amthauer, R. (1953). IST 70: Intelligenz-Struktur-Test. Hogrefe.Google Scholar
  5. Baddeley, A. (1998a). Recent developments in working memory. Current Opinion in Neurobiology, 8(2), 234–238.CrossRefGoogle Scholar
  6. Baddeley, A. (1998b). The central executive: A concept and some misconceptions. Journal of the International Neuropsychological Society, 4(5), 523–526.CrossRefGoogle Scholar
  7. Barker-Collo, S., & Feigin, V. (2006). The impact of neuropsychological deficits on functional stroke outcomes. Neuropsychology Review, 16(2), 53–64.CrossRefGoogle Scholar
  8. Barker-Collo, S. L. (2007). Depression and anxiety 3 months post stroke: Prevalence and correlates. Archives of Clinical Neuropsychology, 22(4), 519–531.CrossRefGoogle Scholar
  9. Bäumler, G. (1985). FWIT: Farbe-wort-Interferenz test [the Stroop-test]. Göttingen. Germany: Hogrefe.Google Scholar
  10. Benton, A. L. (1974). Visual retention test. Psychological Corporation.Google Scholar
  11. Benton, A. (1985). Visual factors in dyslexia: An unresolved issue. In Understanding Learning Disabilities (pp. 87-96). Boston, MA: Springer.Google Scholar
  12. Benton, A. L., & Hamsher, K. D. S. (1976). Multilingual aphasia examination Iowa City: University of Iowa.Google Scholar
  13. Boerboom, W., Heijenbrok-Kal, M. H., Khajeh, L., van Kooten, F., & Ribbers, G. M. (2014). Differences in cognitive and emotional outcomes between patients with perimesencephalic and aneurysmal subarachnoid haemorrhage. Journal of Rehabilitation Medicine, 46(1), 28–32.CrossRefGoogle Scholar
  14. Bonita, R., & Thomson, S. (1985). Subarachnoid haemorrhage: Epidemiology, diagnosis, management, and outcome. Stroke, 16(4), 591–594.CrossRefGoogle Scholar
  15. Brickenkamp, R. (1978). Test d2. Handanweisung [Test d2. Manual]. Göttingen: Hogrefe.Google Scholar
  16. Brodaty, H., Withall, A., & Sachdev, P. S. (2007). Rates of depression at 3 and 15 months post-stroke and their relationship with cognitive decline: The Sydney stroke study. The American Journal of Geriatric Psychiatry, 15(6), 477–486.CrossRefGoogle Scholar
  17. Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11(7), 290–298.CrossRefGoogle Scholar
  18. Buunk, A. M., Groen, R. J., Veenstra, W. S., Metzemaekers, J. D., van der Hoeven, J. H., van Dijk, J. M. C., & Spikman, J. M. (2016). Cognitive deficits after aneurysmal and angiographically negative subarachnoid hemorrhage: Memory, attention, executive functioning, and emotion recognition. Neuropsychology, 30(8), 961–969.CrossRefGoogle Scholar
  19. Canneti, B., Mosqueira, A. J., Nombela, F., Gilo, F., & Vivancos, J. (2015). Spontaneous subarachnoid hemorrhage with negative angiography managed in a stroke unit: Clinical and prognostic characteristics. Journal of Stroke and Cerebrovascular Diseases, 24(11), 2484–2490.CrossRefGoogle Scholar
  20. Carota, A., Berney, A., Aybek, S., Iaria, G., Staub, F., Ghika-Schmid, F., Annable, L., Guex, P., & Bogousslavsky, J. (2005). A prospective study of predictors of poststroke depression. Neurology, 64(3), 428–433.CrossRefGoogle Scholar
  21. Crawford, J. R., Garthwaite, P. H., & Gault, C. B. (2007). Estimating the percentage of the population with abnormally low scores (or abnormally large score differences) on standardized neuropsychological test batteries: A generic method with applications. Neuropsychology, 21(4), 419–430.CrossRefGoogle Scholar
  22. Cronholm, B., & Molander, L. (1957). Memory disturbances after electroconvulsive therapy. Acta Psychiatrica Scandinavica, 32(3), 280–306.CrossRefGoogle Scholar
  23. Dahl, G. (1972). WIP, Reduzierter Wechsler-Intelligenztest. Hain.Google Scholar
  24. d'Avella, D., Cicciarello, R., Zuccarello, M., Albiero, F., Romano, A., Angileri, F. F., Salpietro, F. M., & Tomasello, F. (1996). Brain energy metabolism in the acute stage of experimental subarachnoid haemorrhage: Local changes in cerebral glucose utilization. Acta Neurochirurgica, 138(6), 737–744.CrossRefGoogle Scholar
  25. De Marchis, G. M., Pugin, D., Meyers, E., Velasquez, A., Suwatcharangkoon, S., Park, S., et al. (2016). Seizure burden in subarachnoid hemorrhage associated with functional and cognitive outcome. Neurology, 86(3), 253–260.CrossRefGoogle Scholar
  26. Deelman, B. G., & Saan, R. J. (1990). Memory deficits: Assessment and recovery. Traumatic Brain Injury.Google Scholar
  27. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168.CrossRefGoogle Scholar
  28. Doczi, T. (1985). The pathogenetic and prognostic significance of blood-brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochirurgica, 77(3–4), 110–132.CrossRefGoogle Scholar
  29. Estol, C. J. (2001). Headache: Stroke symptoms and signs. In J. Bogousslavsky & L. Caplan (Eds.), Stroke Syndromes (2nd ed.) (pp. 60–75). Cambridge: Cambridge University Press.Google Scholar
  30. Feigin, V. (2004). When lightning strikes: An illustrated guide to stroke prevention and recovery. Auckland, NZ: Harper Collins Publishers Limited.Google Scholar
  31. Feigin, V. L., Lawes, C. M. M., Bennett D. A., Barker-Collo S. L., & Parag, V. (2009). Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. The Lancet Neurology, 8(4), 355–369.Google Scholar
  32. Flaherty, M. L., Haverbusch, M., Kissela, B., Kleindorfer, D., Schneider, A., Sekar, P., Moomaw, C. J., Sauerbeck, L., Broderick, J. P., & Woo, D. (2005). Perimesencephalic subarachnoid hemorrhage: Incidence, risk factors, and outcome. Journal of Stroke and Cerebrovascular Diseases, 14(6), 267–271.CrossRefGoogle Scholar
  33. Foster, J. K., Black, S. E., Buck, B. H., & Bronskill, M. J. (1997). Ageing and executive functions: A neuroimaging perspective. Methodology of Frontal and Executive Function, 117–134.Google Scholar
  34. Garcia C (1984) A doença de Alzheimer: problemas de diagnóstico clínico. Dissertaçao de Doutoramento. F. M.L Lisboa. Pp 260–261.Google Scholar
  35. Germanò, A., Caruso, G., Caffo, M., Cacciola, F., Belvedere, M., Tisano, A., et al. (1998). Does subarachnoid blood extravasation per se induce long-term neuropsychological and cognitive alterations? Acta Neurochirurgica, 140(8), 805–812.CrossRefGoogle Scholar
  36. Germanò, A. F., Dixon, C. E., d'Avella, D., Hayes, R. L., & Tomasello, F. (1994). Behavioral deficits following experimental subarachnoid hemorrhage in the rat. Journal of Neurotrauma, 11(3), 345–353.CrossRefGoogle Scholar
  37. Gómez, R. L., & Edgin, J. O. (2016). The extended trajectory of hippocampal development: Implications for early memory development and disorder. Developmental Cognitive Neuroscience, 18, 57–69.CrossRefGoogle Scholar
  38. Graham, F. K., & Kendall, B. S. (1960). Memory-for-designs test: Revised general manual. Perceptual and Motor Skills, 11(2), 147–188.CrossRefGoogle Scholar
  39. Grant, D. A., & Berg, E. A. (1948a). The performance of topectomized patients on the University of Wisconsin Card sorting test. American Psychologist, 3, 360.Google Scholar
  40. Grant, D. A., & Berg, E. (1948b). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology, 38(4), 404–411.CrossRefGoogle Scholar
  41. Grant, D. A., & Berg, E. A. (1948c. The Wisconsin Card Sorting Test Random Layout. Directions for scoring and administration.Google Scholar
  42. Grote, E., & Hassler, W. (1988). The critical first minutes after subarachnoid hemorrhage. Neurosurgery, 22(4), 654–661.CrossRefGoogle Scholar
  43. Habib, R., Nyberg, L., & Tulving, E. (2003). Hemispheric asymmetries of memory: The HERA model revisited. Trends in Cognitive Sciences, 7(6), 241–245.CrossRefGoogle Scholar
  44. Hawker, S., Payne, S., Kerr, C., Hardey, M., & Powell, J. (2002). Appraising the evidence: Reviewing disparate data systematically. Qualitative Health Research, 12(9), 1284–1299.CrossRefGoogle Scholar
  45. Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56–62.CrossRefGoogle Scholar
  46. Hopewell, S., Clarke, M., & Mallett, S. (2005). Grey literature and systematic reviews. Publication Bias in meta-analysis: Prevention, Assessment and Adjustments, 48–72.Google Scholar
  47. Hopewell, S., McDonald, S., Clarke, M. J., & Egger, M. (2007). Grey literature in meta-analyses of randomized trials of health care interventions. The Cochrane Library.Google Scholar
  48. Horn, W. (1983). Leistungsprüfsystem: LPS. Verlag für Psychologie: Hogrefe.Google Scholar
  49. Huguet, A., Hayden, J. A., Stinson, J., McGrath, P. J., Chambers, C. T., Tougas, M. E., & Wozney, L. (2013). Judging the quality of evidence in reviews of prognostic factor research: Adapting the GRADE framework. Systematic Reviews, 2(1), 71.CrossRefGoogle Scholar
  50. Huiskamp J., & de Mare, M. (1947). Enige opmerkingen over de Wiersma-Bourdon test. Nederlands Tijdschrift voor de Psychologie, 2, 75–78.Google Scholar
  51. Hunt, W. E., & Hess, R. M. (1968). Surgical risk as related to time of intervention in the repair of intracranial aneurysms. Journal of Neurosurgery, 28(1), 14–20.CrossRefGoogle Scholar
  52. Hütter, B. O., & Gilsbach, J. M. (1993). Which neuropsychological deficits are hidden behind a good outcome (Glasgow=I) after aneurysmal subarachnoid hemorrhage? Neurosurgery, 33(6), 999–1006.Google Scholar
  53. Hütter, B. O., Gilsbach, J. M., & Kreitschmann, I. (1994). Is there a difference in cognitive deficits after aneurysmal subarachnoid haemorrhage and subarachnoid haemorrhage of unknown origin? Acta Neurochirurgica, 127(3–4), 129–135.CrossRefGoogle Scholar
  54. Hütter, B. O., Kreitschmann-Andermahr, I., & Gilsbach, J. M. (1998). Cognitive deficits in the acute stage after subarachnoid hemorrhage. Neurosurgery, 43(5), 1054–1064.CrossRefGoogle Scholar
  55. Jackowski, A., Crockard, A., Burnstock, G., Russell, R. R., & Kristek, F. (1990). The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. Journal of Cerebral Blood Flow & Metabolism, 10(6), 835–849.CrossRefGoogle Scholar
  56. Kapadia, A., Schweizer, T. A., Spears, J., Cusimano, M., & Macdonald, R. L. (2014). Non-aneurysmal perimesencephalic subarachnoid hemorrhage: Diagnosis, pathophysiology, clinical characteristics, and long-term outcome. World Neurosurgery, 82(6), 1131–1143.CrossRefGoogle Scholar
  57. Kim, J. S., & Choi-Kwon, S. (2000). Poststroke depression and emotional incontinence: Correlation with lesion location. Neurology, 54(9), 1805–1810.CrossRefGoogle Scholar
  58. Klebelsberg, D. (1960). Wiener Determinationsgerät. Diagnostica, 6(4).Google Scholar
  59. Krajewski, K., Dombek, S., Martens, T., Köppen, J., Westphal, M., & Regelsberger, J. (2014). Neuropsychological assessments in patients with aneurysmal subarachnoid hemorrhage, perimesencephalic SAH, and incidental aneurysms. Neurosurgical Review, 37(1), 55–62.CrossRefGoogle Scholar
  60. Ljunggren, B., Brandt, L., Säveland, H., Nilsson, P. E., Cronqvist, S., Andersson, K. E., & Vinge, E. (1984). Outcome in 60 consecutive patients treated with early aneurysm operation and intravenous nimodipine. Journal of Neurosurgery, 61(5), 864–873.CrossRefGoogle Scholar
  61. Ljunggren, B., Sonesson, B., Säveland, H., & Brandt, L. (1985). Cognitive impairment and adjustment in patients without neurological deficits after aneurysmal SAH and early operation. Journal of Neurosurgery, 62(5), 673–679.CrossRefGoogle Scholar
  62. Madureira, S., Canhão, P., Guerreiro, M., & Ferro, J. M. (2000). Cognitive and emotional consequences of perimesencephalic subarachnoid hemorrhage. Journal of Neurology, 247(11), 862–867.CrossRefGoogle Scholar
  63. Maslehaty, H., Petridis, A. K., Barth, H., & Mehdorn, H. M. (2011). Diagnostic value of magnetic resonance imaging in perimesencephalic and non-perimesencephalic subarachnoid hemorrhage of unknown origin. Journal of Neurosurgery, 114(4), 1003–1007.CrossRefGoogle Scholar
  64. McAuley, L., Tugwell, P., & Moher, D. (2000). Does the inclusion of grey literature influence estimates of intervention effectiveness reported in meta-analyses? The Lancet, 356(9237), 1228–1231.CrossRefGoogle Scholar
  65. McDowell, M. M., Zhao, Y., Kellner, C. P., Barton, S. M., Sussman, E., Claassen, J., et al. (2017). Demographic and clinical predictors of multiple intracranial aneurysms in patients with subarachnoid hemorrhage. Journal of Neurosurgery, 1–8.Google Scholar
  66. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.CrossRefGoogle Scholar
  67. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Prisma Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097.CrossRefGoogle Scholar
  68. Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & Dolan, R. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812–815.CrossRefGoogle Scholar
  69. Morris, P. G., Wilson, J. T. L., & Dunn, L. (2004). Anxiety and depression after spontaneous subarachnoid haemorrhage. Neurosurgery, 54(1), 47–54.CrossRefGoogle Scholar
  70. Mukerji, N., Holliman, D., Baisch, S., Noble, A., Schenk, T., & Nath, F. (2010). Neuropsychologic impact of treatment modalities in subarachnoid hemorrhage: Clipping is no different from coiling. World Neurosurgery, 74(1), 129–138.CrossRefGoogle Scholar
  71. Nieuwkamp, D. J., Setz, L. E., Algra, A., Linn, F. H. H., de Rooij, N. K., & Rinkel, G. J. E. (2009). Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: A meta-analysis. The Lancet Neurology, 8(7), 635–642.CrossRefGoogle Scholar
  72. Norman, D. A., & Shallice, T. (1980). Attention to Action: Willed and Automatic Control of Behavior Technical Report No. 8006.Google Scholar
  73. Norman, D. A., & Shallice, T. (1986). Attention to action. In Consciousness and Self-regulation (pp. 1–18). Springer US.Google Scholar
  74. Ørbæk, P., Risberg, J., Rosén, I., Hæger-Aronsen, B., Hagstadius, S., Hjortsberg, U., et al. (1985). Effects of long-term exposure to solvents in the paint industry: A cross-sectional epidemiologic study with clinical and laboratory methods. Scandinavian Journal of Work, Environment & Health, 1–28.Google Scholar
  75. Orgass, B. (1982). Token Test (TT). Göttingen: Testzentrale.Google Scholar
  76. Pagnini, F. (2013). Psychological wellbeing and quality of life in amyotrophic lateral sclerosis: A review. International Journal of Psychology, 48(3), 194–205.CrossRefGoogle Scholar
  77. Raven, J. C. (1977). Court jH, raven J. Manual for Raven’s progressive matrices and vocabulary scales.Google Scholar
  78. Reitan, R. M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271–276.CrossRefGoogle Scholar
  79. Robinson, R. G. (2003). Post-stroke depression: Prevalence, diagnosis, treatment, and disease progression. Biological Psychiatry, 54(3), 376–387.CrossRefGoogle Scholar
  80. Ronkainen, A., & Hernesniemi, J. (1992). Subarachnoid haemorrhage of unknown aetiology. Acta Neurochirurgica, 119(1–4), 29–34.CrossRefGoogle Scholar
  81. Rosen, D. S., & Macdonald, R. L. (2005). Subarachnoid hemorrhage grading scales. Neurocritical Care, 2(2), 110–118.CrossRefGoogle Scholar
  82. Roussel, M., Martinaud, O., Hénon, H., Vercelletto, M., Bindschadler, C., Joseph, P. A., et al. (2016). The behavioral and cognitive executive disorders of stroke: The GREFEX study. PLoS One, 11(1), e0147602.CrossRefGoogle Scholar
  83. Salmond, C. H., Devito, E. E., Clarke, L., Menon, D. K., Chatfield, D. A., Pickard, J. D., et al. (2006). Impulsivity, reward sensitivity, and decision-making in subarachnoid haemorrhage survivors. Journal of the International Neuropsychological Society, 12(5), 697–706.CrossRefGoogle Scholar
  84. Smith, M., & Citerio, G. (2015). What’s new in subarachnoid hemorrhage. Intensive Care Medicine, 41(1), 123–126.CrossRefGoogle Scholar
  85. Sonesson, B., Säveland, H., Ljunggren, B., & Brandt, L. (1989). Cognitive functioning after subarachnoid haemorrhage of unknown origin. Acta Neurologica Scandinavica, 80(5), 400–410.CrossRefGoogle Scholar
  86. Stinissen, J., Willems, P. J., Coetsier, P., & Hulsman, W. L. L. (1970). Manual for the Dutch translated and adapted version of the Wechsler adult intelligence scale (WAIS).Google Scholar
  87. Strub, R. L., & Black, F. W. (1977). The mental status exam in neurology. Philadelphia: FA Davis.Google Scholar
  88. Suarez, J. I., Tarr, R. W., & Selman, W. R. (2006). Aneurysmal subarachnoid hemorrhage. New England Journal of Medicine, 354(4), 387–396.CrossRefGoogle Scholar
  89. Teasdale, G. M., Drake, C. G., Hunt, W., Kassell, N., Sano, K., Pertuiset, B., & De Villiers, J. C. (1988). A universal subarachnoid hemorrhage scale: Report of a committee of the world federation of neurosurgical societies. Journal of Neurology, Neurosurgery, and Psychiatry, 51(11), 1457.CrossRefGoogle Scholar
  90. The ACROSS Group. (2000). Epidemiology of aneurysmal subarachnoid haemorrhage in Australia and New Zealand: Incidence and case fatality from the Australasian cooperative research on subarachnoid Haemorrhage study (ACROSS). Stroke, 31, 1843–1850.CrossRefGoogle Scholar
  91. Truelsen, T., Bonita, R., Duncan, J., Anderson, N. E., & Mee, E. (1998). Changes in subarachnoid haemorrhage mortality, incidence, and case fatality in New Zealand between 1981-1983 and 1991-1993. Stroke, 29(11), 2298–2303.CrossRefGoogle Scholar
  92. Truelsen, T., Piechowski-Jóźwiak, B., Bonita, R., Mathers, C., Bogousslavsky, J., & Boysen, G. (2006). Stroke incidence and prevalence in Europe: A review of available data. European Journal of Neurology, 13(6), 581–598.CrossRefGoogle Scholar
  93. Tso, M., & Macdonald, R. L. (2014). A need for a standardized cognitive outcome measure in subarachnoid hemorrhage clinical studies. World Neurosurgery, 81(2), 252–254.CrossRefGoogle Scholar
  94. Van Gijn, J., Kerr, R. S., & Rinkel, G. J. (2007). Subarachnoid haemorrhage. The Lancet, 369(9558), 306–318.CrossRefGoogle Scholar
  95. Warlow, C. (2001). Stroke, transient ischemic attacks, and intracranial venous thrombosis. In M. Donaghy (Ed.), Brain’s Diseases of the Nervous System (11th ed.) (pp. 775–896). New York: Oxford University Press.Google Scholar
  96. Wechsler, D. (1955). Manual for the Wechsler adult intelligence scale. Psychological Corporation.Google Scholar
  97. Wechsler, D. (1958). The measurement and appraisal of adult intelligence. Psychological Corporation.Google Scholar
  98. Wechsler, D. (1981). WAIS-R manual: Wechsler adult intelligence scale-revised. Psychological Corporation.Google Scholar
  99. Wechsler, D. (1987). WMS-R: Wechsler memory scale-revised. Psychological Corporation.Google Scholar
  100. Wiebers, D. O. (2006). Unruptured intracranial aneurysms: Natural history and clinical management. Update on the international study of unruptured intracranial aneurysms. Neuroimaging Clinics, 16(3), 383–390.CrossRefGoogle Scholar
  101. Wong, G. K. C., Lam, S. W., Wong, A., Lai, M., Siu, D., Poon, W. S., & Mok, V. (2014). MoCA-assessed cognitive function and excellent outcome after aneurysmal subarachnoid hemorrhage at 1 year. European Journal of Neurology, 21(5), 725–730.CrossRefGoogle Scholar
  102. World Health Organization. (2005). Preventing chronic diseases: A vital investment. World Health Organization.Google Scholar
  103. Young, A. W., Perrett, D., Calder, A., Sprengelmeyer, R., & Ekman, P. (2002). Facial expressions of emotions: Stimuli and test (FEEST). In Thurstone. UK: Thames Valley Test Company.Google Scholar
  104. Zimmermann, P., & Fimm, B. (1992). Battery of tests for the study of attention (TAP) (pp. 1–73). Würselen: Psytest.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychologyBeaumont HospitalDublin 9Ireland
  2. 2.School of Psychology, John Henry Newman BuildingUniversity College DublinDublin 4Ireland
  3. 3.Academic Unit of NeurologyTrinity Biomedical Sciences InstituteDublin 2Ireland
  4. 4.Department of NeurosurgeryBeaumont HospitalDublin 9Ireland

Personalised recommendations